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Continuing the program developed in a previous paper, a "superconductive" solution describing the
proton-neutron doublet is obtained from a nonlinear spinor field Lagrangian. We Gnd the pions of Gnite mass
as nucleon-antinucleon bound states by introducing a small bare mass into the Lagrangian which otherwise
possesses a certain type of the p5 invariance. In addition, heavier mesons and two-nucleon bound states are
obtained in the same approximation. On the basis of numerical mass relations, it is suggested that the bare
nucleon Geld is similar to the electron-neutrino Geld, and further speculations are made concerning the
complete description of the baryons and leptons.

I. INTRODUCTION theory will depend on its ability to account for the
violation of the symmetry as well.

Finally, we face the problem of the baryon versus
the lepton, the electromagnetism, and the weak
processes. Here our theory creates a particular incentive
for speculation concerning the baryon-lepton problem,
since the ordinary and extraordinary solutions im-
mediately remind us of these two families of particles.

Ke do not profess to have any clear-cut answers to
these problems. In the present paper we shall again
content ourselves with a rather modest task. We will
first discuss a generalization of our model which in-
corporates the isospin for the nucleon and guarantees
the existence of the pion. This can be done by de-
manding a y5Xisospin gauge group with a slight
violation so as to give the pion its 6nite mass. We find
that the bare mass necessary to achieve the latter end
is at most several Mev. On this basis a suggestion is
made that the bare nucleon 6eld is essentially the same
as the electron-neutrino field.

The complete picture of the baryon symmetries and
the baryon-lepton problem is largely beyond the scope
of the present paper, but some relevant discussions on
this subject will also be presented, especially those
concerned with the Sakata model and the general y5
symmetry.

'N Part I of this paper' we have proposed a model of
& - strong interactions based on an analogy with the
BCS-Bogoliubov theory of superconductivity. It is
characterized by a nonlinear spinor 6eld possessing y5
invariance, and simulates some important features of
the meson-nucleon system. The basic principle under-
lying the model is the idea that field theory may admit,
as a result of dynamical instability, extraordinary
(nontrivial) solutions that have less symmetries than
are built into the Lagrangian. ' In fact we have obtained
as an extraordinary solution a massive fermion and a
massless pseudoscalar boson as idealized proton and
pion, together with other heavy mesons.

If we now try to make our model more realistic, a
number of problems spring up naturally. First of all,
we would have to account for the isospin and strange-
ness quantum numbers. It seems rather obvious that
these degrees of freedom have to be built into the theory
from the beginning, although there may be some
possibility of utilizing both the ordinary and extra-
ordinary solutions to enlarge the Hilbert space. as wi11

be discussed later.
These quantum numbers will not yet be enough to

determine our theory satisfactorily, as we expect to
have more additional symmetries which are at least
approximately satis6ed. Among other things, we have
postulated the y5 invariance as a cornerstone of our
previous model. YVhat would be the proper generali-
zation of the ys invariance? Then there also arises the
inevitable question of any possible symmetry among
baryons of different strangenesses. Since such a sym-
metry is at any rate only approximate, the test of the

II. MODEL~LAGRANGIAN FOR THE NUCLEON

First we would like to observe that the nonlinear
spinor field adopted in I is not an essential element of
our theory, as is the case with the Heisenberg theory'
but is rather a model adopted to study our dynamical
principles. At least in the present stage of the game,
the controlling factors are the symmetry properties
and qualitative dynamical characteristics of the basic
fermion-fermion interaction, and whether the inter-
action is due to some fundamental boson, or funda-
mental nonlinearity (or something entirely new) is of
secondary importance. Nevertheless, we have to choose
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some model, and naturally there wiH arise certain
predictions specific to the particular model. We take
notice of the fact that the pion, the lightest of the
meson family, is pseudoscalar and isovector, whereas
its isoscalar counterpart of comparable mass does not
seem to exist. ' If the pion is to be intimately related to
a symmetry property as in our previous model, this
would imply that the model of nucleons should allow
an (approximate) invariance under the ypX isospin
gauge group of Giirsey, ' but not under the simple
(Touschek) yp gauge group, at least not so well as in
the former case. For this reason, we would altogether
consider the following gauge groups:

4'~ ~'V ip ~ pe ra— (2.1a)

tPg ~ exp(is. ng)it g, tpgt —+ iP~t exp( i~ n—g)

Pr, ~ exp(i~1nr)PI,„frt~ /It exp( —i ~ nl), (2.2)

where Pg and PI. are the right- and left-handed
components.

As the simplest Lagrangian that meets our require-
ments, we adopt the form

L= Py„8„$PM—'P-
+g pl A A Z4v pr44V p—r4] (2 3)

If the bare mass operator M'=0, this Lagrangian
possesses, in addition to Eq. (2.1), an invariance under
the discrete "mass reversal" group:

4 ~vp4, P~ —4vp (2.4)

The bare mass operator M' is a possible agent for the
breakdown of the Giirsey group, and will be related
to the finite pion mass. ' For the moment, we will
assume M =0. Before going to solve the self-consistent
equation for the mass, we give the result of the Fierz
transformation on Eq. (2.3):The interaction becomes

I- t,=4gp[+~ QVpr'AVprg']-
+~gpgVpPPV pP —fr,/Pre]

kg pLkv, ÃvA —kv—.vpAv. v p4'j

+s gpL4'&~4'4'~~ 4' 0& r4'4'o' r4'3 (2 5)
4 It may not be impossible that the ordinary p& invariance is

violated more strongly than the Gursey p& invariance so that the

p —&exp(iz n')P, f —+/exp( i~ —n'), (2.1b)

iP
—+ exp(imp~ n")P, f —+ it exp(imps n"), (2.1c)

where r denotes the nucleon isospin matrices.
Obviously, the 6rst two are generators of the nucleon

number gauge and the isospin transformation, respec-
tively. The second and third transformations combined
form a four-dimensional rotation group on the four
components composed by the proton and neutron of
both handednesses. ' Thus we may also replace Eqs.
(2.1a) and (2.1b) by the following transformations

which is a rather complicated combination of all kinds
of terms.

Ke now apply the linearization procedure of I to
Eqs. (2.3) and (2.4), and obtain the self-energy

m= (1+-,')gp TrSp&"&(0)

10gp p d'pm
i— F(P,A).

(2m)4 & p'+m'
(2.6)

Note that the trace refers to both spin and isospin
variables. This differs from Eq. (3.6) of l only by the
change of the effective coupling gp

—& Sgp/2—=gp'. So we
can simply take over the previous formulas, namely,

gp' t
"'

t
4m'q 1

1= d~'] 1—
4w' 0 4m~

(2.7)

for the nontrivial solution if the dispersion integral
(4.7) of I is used.

x»Lo.~~(p'+ :q)l'(P'+ 'q, P' -:q)-——
XS,(p' —-,'q))d'p', (3.1)

where the summation on the right-hand side is over the
various tensor forms in the interaction Lagrangian.
The "vertex function" I'(p+-', q, p —-', q) reduces to a
bound state wave function when it becomes a homo-
geneous solution (7=0) for a particular value of
g'= —p,'. We will brieQy discuss those two-nucleon
states for which there is a possibility of binding.

A. Pseudoscalar, Isovector Meson

Unlike the case in I, only the pseudoscalar interaction
contributes to this state. Assuming

mass of the 7ro meson may come sufficiently high. But to achieve
this end by means of a bare mass does not seem to be feasible.' F. Gursey, Nuovo cimento 16, 230 (1960).' For its possible origin, see Sec. V.

III. DETERMINATION OF MESON STATES

Since the interaction Lagrangian in Eqs. (1.1) and
(1.3) contains a number of different couplings, we
expect to get various kinds of "mesons" as bound
nucleon-antinucleon pairs in our simple ladder approxi-
mation. As was explained in I, this is the proper
approximation to match our self-energy equation at
least for the pseudoscalar meson which is expected to
have zero mass; moreover, even for other types of
bound states we may reasonably trust its qualitative
validity in predicting the existence and level ordering-
of possible bound states to the extent that our inter-
action is regarded basically as a short-range potential
between spinor particles.

For general discussion, it is convenient to follow the
procedure given in the Appendix of I. The basic
equation to be considered is of the type

r(p+ ,'q, p ,'q)=y+-i g g.o.——
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l,~=vg7, I"~, we obtain

PP,—~P+PPL1 qsIP(qs) j
gp' t."' d ' ( 4m') &

I~(q')= ~

(
1—

47rs J 4~2 qs+ss ( Ks

(3.2)

To the isoscalar meson both vector and tensor
interactions contribute, the former being attractive
and the latter repulsive. The wave function will have
the form

f s %sf 1 +&svqvf 2

where, of course, Eq. (2.7) was utilized. This has a
homogeneous solution for q'=0, corresponding to the
zero-mass "pion. " This pion-nucleon coupling is of
pure pseudoscalar type, which can be calculated from
the inhomogeneous equation with y~=go'ps'-, .-, as was
done in the Appendix of I. Q~e get, namely, ~

Gp'/4n-= gp'$4rI~(0) J '

which yields a coupled equation for F& and F2. This
coupling, however, is rather small, so that we get a
solution by neglecting F&.

gp' t
"s da' f' 4m'q l

t 2m'q

I I
1+

15prs ~ 4mm s' —p' E

fs'~) 20m'/7.

t
s'da' t' 4m'y & The nuclear coupling will be predominantly non-

derivative.
~4mm s' E

B. Scalar, Isoscalar Meson

Kith the ansatz I'=I'~ we have

p s—~s+r sIs (qs)

gp' r "s' —4ms
f

4m'y l
Is(q')= )' des~ 1—

47r2 Ij 4~a qs+ i' ( ss )

D. The "Deuteron" States

As in I, we can discuss the nucleon-nucleon states in
parallel with the meson states. The interaction may be
written conveniently in the form

(3 4) I iet= jgp74"YA'V VA' 4'rrsA'V +sA'

+%V,VprA"4"VsVsr4'j

= 1—(q'+4m')I~(q').

This leads to a zero-binding state: q'= —4m' with the
scalar nucleon coupling constant

Gs'/4s-= gp'[4nI (—4m') j '. (3.5)

C. Vector Mesons

There are two vector mesons, with isospin 1 and 0.
The isovector meson arises from the tensor interaction

Po„„r,Pfrr„„r,P .with the wave function of the type

FPs =0

Pygmy

7 sr.v . v

The mass is determined from'

g,
' ~» dss ( 4ms) l

60' ~4mm K fi 0 K )
4m'p-

&( ~' —4m' —p'~ 2+

This is seen to lead to two bound states: a pseudovector,
isoscalar (I=1+, T=O) coming from the first two
interaction terms, and a scalar, isovector (1+0+, T= 1),
coming from the last term. For the J=1+, T=O state
(deuteron) the main contribution comes from the
attractive tensor interaction, and we get

gp' f
s' ds' ( 4m') i~~ 2

i
1—

i
ii'+—( '—4m'),

4ir' "4m~ s' les ( s' —) 15

p,
'

&~ 17m'/5.

For the J=O+, T=1 case we have

r=~,~ qr~',

1= -'sm'I~( —p')

p,
'

&~ 16m'/S.

which has a solution (for sufficiently small A')

fi'~& 10m'/3.

The coupling of this meson to the nucleon is necessarily
of the derivative type.

' Note that this is half the value of I because a pion (e.g. , s p)
consists of two substates pp and An, which changes the normali-
zation of the pion wave function.

The ambiguity about the subtraction of the most divergent
part was discussed in I, section 4. The gross qualitative feature is
not altered even if we do not make a subtraction.

IV. VIOLATION OF y5 INVARIANCE

Let us now discuss the violation of the p5 invariance
as indicated by the 6nite mass of the real pion. It
would be senseless, of course, to talk about the in-
variance if the observed pion mass implied a large
departure from our original Lagrangian, for example,
due to a bare nucleon mass as large as the observed
mass. So we need to estimate the amount of violation
in the Lagrangian.

In general, the bare mass operator, which does not
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violate nucleon number conservation, 9 can have the
following form

where
I'(m) =dI (m)/d(m') &0 .

M= mt+mzrz+mszvz,

which gives two eigenmasses

(4.2)

Ms= mt +ms'~ n+. mz'ivs+m4sivz~ n', (4.1)

where n and n' are arbitrary unit vectors in the isospin
space. The observed mass generated by Eq. (4.1) will

also have a similar form. Because of the invariance of
the rest of the Lagrangian under the transformations
(2.1), we can choose it to be

Am= mx —m =ma'. (4 8)

Equation (4.6a) determines mi in terms of mts.

The self-consistency condition required, for m&' ——0,
is that I(m) = 1. We may thus expand I(m):

I(mi) = 1+I'(m) (m ts —m') )

and obtain

am'= mt' m'= ——mt'/[mI'(m) j. (4.7)

Since I'(m) is of the order of —I(m)/m' (see below),
this means

8Z p — SS] m2 023 )

m = m] S$2 @23 (4.3)
From (4.6b), then

The self-consistent self-energy equation to be solved
is now

mz =mz'{ 1—-', [1+I'(m) m'7) —'

(4.8')

where

mi mt'+ Imi+——Imz,

m2= mg' ——,'Im2 —-', Imp,

m3= m3' —5Im3)

0=m4'+Imz,

(4.5)

I=-,'[I(m„)+I(m„)],
I=-', [I(m„)—I(m.)],

8zgp I' d p
I(m) = — Il (P,A).

(2~)4 J ps+ms

(4.5')

We are interested in a small change of the non-trivial
solution due to M'. From Eq. (4.5) it is clear that
m3=0 unless

m '= —(-'+I—')m 'WO

The term m3 implies a violation of time and space
rejections. Since we are not interested in such a vio-
lation, we will assume m3 ——m3' ——m4 ——0 from now on.
We further note that

I =I(mi)+0[(mz/m. i)'j, I=0[ms/mt ].
In fact, up to the first order in ms/mt, we may put

M Mo+gs{TrS&'~&(0) —vsr; Tr[vsr'S&'zr'(0)3
+s'vz Tr[vzSz ~"'(0)]——',r; Tr[r;Spi~'(0)]). (4.4)

Equating the respective coefficients of both sides, we get

We note that originally there were two solutions +
~
m ~,

which now split into opposite directions according to
Eq. (4.7) or (4.8). The meaning of this is as follows.
Under the strict p~ invariance, there is a complete
degeneracy with respect to the transformation (2.1c).
The perturbation mI' removes this degeneracy, so that
the energy of the vacuum will depend on the orientation
of the "p5 spin" of the negative energy fermions present
in the "vacuum" with respect to this preferred direction.
Obviously, the self-consistent procedure, which is
similar to the variational method, gives the two
extremum configurations corresponding to parallel
(mp/m)0) or antiparallel (ms/m&0) vs-spin lineup.
The parallel case has the larger "gap parameter" ~m~

than the antiparallel case, so that the former will

correspond to the stable ground state. The latter, on
the other hand, should correspond to a metastable
world.

It is perhaps interesting to see the general behavior
of the self-consistency equation for arbitrary magnitude
of sly, assuming m2' =0 for simplicity. The relevant
equation,

m[1—I(m) f=m',

is plotted schematically in Fig. 1.
Note that the trivial branch of the solution, which

goes through the origin, has mp/m&0. In other words,
even in this case the self-consistent solution is quali-
tatively diferent from the simple perturbation result.
As m' increases, it approaches the metastable nontrivial
solution, and finally both go into the complex plane.

m, =mt'+I(mi)mi,

m2 ms s [I(mi)+2I (ml)ml fm2,

(4.6a)

(4.6b)

s The most general form of the self-energy Lagrangian (neg-
lecting isospin dependence) is

j Lzv p» (p')+&s (p'}+zv.Pvs-'z (p'}+zve &4 (p')]tZ
+f'"bv Pz (P')+&"8 (P')+'zv Pvz» (P')+zvz &s (P')j0

+H.c.
We do not attempt to study sich a problem at this place,

FIG. 1. The three self-
consistent mass solutions m
(ordinate) as a functionof
the bare mass m' (abscissa).
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We now come to the meson problem. The pion mass
will be determined from

For the observed value of is'/4mp=i/200 we then
have, for the stable solution

r;=zgp r'~ TrLr,Sp(p'+-,'q)r, S,(p' —-,'q) jd'p', (4.9)

isosoin[r~~)"

1+rs 1—
rsvp= isos pin r4

~
~p " +&t

2 2

mP &m)/200= 5 Mev. (4.13)

The amount of bare mass needed to produce the pion
mass is thus surprisingly small.

On the other hand, the metastable solution
(m&/m(0) produces an imaginary pion mass, indi-
cating the unphysical nature of the solution.

The pion-nucleon coupling constant at the pion pole
becomes Lsee Eq. (2.3))

1+rs 1—r, ~-
~r.

~

gz(ms) +5'z(ms)

( m)+sf&(m )s5' (ms)+ 5', (ma)

= 25g
2 2

g p(~p) gg()nn) g (my) g {'rnn)

+2 (28,;)8, s
—(),,)

The second term yields convergent. results, and is
OP(Am/m)'] To the .order Am/m, therefore, only the
first term is important; moreover,

(5 (m&)+5 (m))/2=5 ( ')

In other words, there will be no erst-order mass splitting
of the pion. The mass is then determined from

G~'/4 =gp'L4 f~( ~'—)j '

which is changed from the old one only by an order
ii'/mp-mp/m, .

The other heavy meson states can be treated simi-
larly. We see easily that the changes induced by nz&

are quite small: In general Ap'/mp=O(mp/m&) and
AG'/O'=O(mp/m)). Thus the effect of 3P shows up
dramatically only in the pion mass because it was
originally zero.

Finally we remark that instead of a bare mass, we
could assume slightly different coupling constants g,
and g„((g,) for the sca,lar and pseudoscalar interaction
terms in the Lagrangian (2.3). The nature of the
solution is somewhat diferent from the previous case
because the Lagrangian still retains the mass reversal
invariance II ~yet, and the solution is twofold de-
generate (+m). The fractional change of the coupling
necessary to produce the pion mass is again small:

I Ag/g I
=i '/4m '.

gp'
t

' (('d4' ( 4mP) ~

4m' 44mis )('—is' E )(' )

For m&'=0, we had originally

gp'
(

4' t' 4msq &

1=J„(0)= d)('~ 1—
4sr' "4 ~

which should now be replaced by

mp g()' (
4' ( 4mp) '

mi 47I ~ 4m)s ( K

according to Eq. (4.6a).
From Eqs. (4.10) and (4.11) follows

mP g()' (" d~'
t 4mP) I

my 4)l & 4mis K —
i4 ( K

g
'

(
4' d)(s ( 4mP) ~

mp)

4mp 4 mi)

(4.10)

(4.11)

(4.12)

V. IN:PLICATIONS OF THE MODEL

Let us now discuss the relevance of our present model
to the physical realities of the nucleons and mesons.

I. We have seen that our Lagrangian (2.3) leads to
the nucleon of isospin 2 and the pion of isospin 1. The
pion-nucleon coupling constant (pseudoscalar) depends
on the cutoG parameter. For the observed large value
(=15) of G~'/4ir, we see from Eqs. (1.5) and (2.3)
that A must be of the same order of magnitude as the
nucleon mass itself. This is not unreasonable, since the
effective nucleon-nucleon interaction in higher approxi-
mations would proceed with the exchange of nucleon
pairs.

A third parameter, the bare mass, enters our picture
in order to make the meson mass finite. It would seem
rather unsatisfactory and embarrassing that after all one
has to break the postulated symmetry in an ad hoc
manner. In order to clear up this point, the origin of
the effective bare mass then becomes an interesting
and important question. Since the required bare mass

t Eq. (4.13)] seems to be quite small, a tempting
possibility suggests itself that the bare nucleon field is
the same as the electron-neutrino field. The electron
mass itself could be either intrinsic or of electromagnetic
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origin, "Under this assumption, the bare mass operator
would have the form M =m, (1+rs)/2, where the word
"bare" is used relative to the interaction under con-
sideration. According to the results of the previous
section, it is only the isoscalar part of M' that produces
the large shift of the pion mass, and the amount of
violation of the isospin invariance will remain small.

Z. Besides the pion, we have also derived vector
mesons of both isoscalar (T=O) and isovector (T=1)
types, and a scalar isoscalar meson which is actually
unbound. Xo state corresponding to the isoscalar pion
(ws') is found. Of course, these results should depend
sensitively on the choice of the interaction in the first

place, and to a lesser extent also on the degree of ap-
proximation. At any rate, it seems to be a rather
interesting and satisfactory feature of the model that
these same vector mesons have been anticipated
theoretically from various grounds, " even though there
do not seem to be convincing experimental indications
of their existence as yet."

The mass values obtained here are rather high, and

these mesons should actually decay into pions very
quickly. The coupling constants are generally of the
same order as the pion coupling constant, which means

a very strong interaction for the vector and scalar
mesons. These results, however, may be considerably
altered in a better approximation. For one thing, the

heavy mesons are coupled strongly to many-pion states
which would make the former mere resonances of the
latter. Moreover, the nucleon-nucleon and meson-

meson interactions can go through long-range forces
due to the exchange of these same mesons, which would

in turn change the meson states themselves. These
processes (the so-called left-hand cuts in the language
of the dispersion theory) have not been taken into
account in our ladder approximation.

This is a highly cooperative mechanism, and if one
wants to handle it in a systematic way, one may be led
to the same dispersion theoretical approach that is now
widely pursued in pion physics. As a result of such
effects, it is then conceivable that the masses of the
vector mesons, for example, may come down. " Al-

ternatively, it is also conceivable that we have more
than one resonance having the same quantum numbers,
of which we have obtained the higher ones. These
high-energy poles may in turn determine the low-energy

resonances.
In addition to the vector mesons, we expect a T=O,

J=O+ resonance, which has also been postulated by
some people. "We should try to check these predictions
against experimental evidence, such as the character-
istic Q-value distributions and angular correlations in

meson production processes.
Turning to the nucleon number 2 states, we expect

two bound states (T=O, J=1+ and T=1, J=O+) with

comparable masses to those for the vector mesons.
This is a qualitatively satisfactory feature in view of
the observed deuteron and the singlet virtual states,
even though the actual binding is considerably weaker. "

3. As was already mentioned in I, our particular
model was motivated by the approximate axial vector
conservation observed in the nuclear P decay and the
role of the pion in it.' "The only difference from I is
that (a) we now have the conservation of the isovector
axial vector current if'„ysr,P instead of the simple

axial vector current iPyp sP, and (b) a small violation
of conservation is explicitly introduced. The general
treatment of the problem will be completely analogous
to the previous case.

Assuming that the P decay occurs through an addi-

tional term in the Lagrangian

Ls= as@.(1+»)r+P. +H c. Lr, =--', (r,+ ir, )],

where /„refers to the lepton current, the nuclear P-

lower T=O, J=O+ and T=1, J=1 states. Any change in the
binding force, however, will be offset by the corresponding change
in the nucleon mass, which automatically adjusts the pion mass
to lie where it should be. The exchange of the T=O, J=1, and
J=0 mesons, therefore, would not be so important in determining
the relative shift of the meson levels.

~4 J. Schwinger, Ann. Phys. 2, 407 (1957); M. Gell-Mann and
M. Levy, Nuovo cimento 16, 705 (1960); S. Gupta, Phys. Rev.
111, 1436 (1958), Phys. Rev. Letters 2, 124 (1959); M. H.
Johnson and E. Teller, Phys. Rev. 98, 783 (1955); H. P. Duerr
and E. Teller, ibid 103, 469 (1956)..The 0 meson mass obtained
here is independent of the cutoff A, so that there may be some
point in arguing that it is more reliable than for the vector mesons.
If so, we may expect a nucleon-antinucleon resonance near zero
kinetic energy (taking account of the mass shift due to M'). The
width may be quite broad.

"In fact, both T=O and T=1 vector meson exchanges work
in the direction to reduce the binding relative to the nucleon-
antinucleon case."S. Bludman, Nuovo cimento 9, 433 (1958); F. Giirsey, Ann.
Phys. 12, 91 (1961);Y. Nambu, reference 1; M. Gell-Mann and
M. Levy, reference 14; J. Bernstein, N. Gell-Mann, and L.
Michel, Nuovo cimento 16, 560 (1360); J. Bernstein, S. Pubini,
M. Gell-Mann, and %. Thirring, ibid. 17, 757 (1960); Chou
Kuang-Chao, J. Exptl. Theoret. Phys. (U.S.S.R.) 39, 703 (1960)
LSoviet Phys. —JETP 12, 492 (1961)j.

'0 The electromagnetic interaction is invariant under the simple
» transformation, but not under the Gursey transformation since
it fundamentally distinguishes between the charged and neutral
components. Thus there is a built-in violation which can eventu-
ally produce the pion mass.

"W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1609 (1960);
Y. Nambu, ibid 106, 1366 (19.57); G. Chew, Phys. Rev. Letters
4, 142 (1960);J. J. Sakurai, Ann. Phys. 11, 1 (1960).

' J. A. Anderson, Vo X. Bang, P. G. Burke, D. D. Carmonyp
and N. Schmitz, Phys. Rev. Letters 6, 365 (1961);A. Abashian,
N. Booth, and K. M. Crowe, ibid 5, 258 (1960). .

'~ A crude wry to see the general tendency will be to argue as
fullovrs: The T~ 1 vector meson is coupled to the nucleon mainly
through tensor coupling, so that it will cause a nucleon-anti-
nucleon interaction of the type g'(rr& e&s& s2)e ""—/r This.
tends to raise T=1, J=O+ and T=O, J=1 meson states, and
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decay vertex becomes

I'„=gs[iy„r+F&r(q ) ia—„„q„r+Fvs(q)+(iyvysr+
+L2~n sq, r+/(q'+t .')]f(q') )F~(q') I,

where q is the momentum change. In the ladder
approximation, I~'v&(q') arises from the vector-type
nucleon pairs, and Fv, (0)=1 (in accordance with the
Ward identity, applicable to the isospin current, which
shows that Fvi(0) = 1 in general. ")

In the axial vector part, F~(q') =1 in our approxi-
mation. f(q') arises because of the violation of the
&5 invariance, but it deviates from 1 only to the order
tnis/mr tr'/nsis, as was already seen in the previous
section. For practical purposes, therefore, the axial
vector current has the desired form which wouId lead
to the Goldberger-Treiman relation"

2rrt rgb = 42G~g~,

where gz=gsF&(0) and G, g are, respectively, pion-
nucleon and pion-lepton couplings.

In higher orders, however, F~(q') will be present,
and in general F~(0)&1 even under the strict
invariance, People have conjectured in the past that
F&(0)=gs/go=1 as tr —+0, but this does not seem
to be easily guaranteed. The generalized Ward identity
for the axial vector current" suffices to prove the
Goldberger-Treiman relation, but is not enough to
make F~(0)=1. In order that the latter should come
out rigorously, we would need a more subtle mechanism.
Nevertheless, we can try a working hypothesis that
gs/gv= 1 under the strict invariance, and then estimate
the deviation due to the violation. This scheme is
carried out in the Appendix.

VI. FURTHER PROBLEM

We will consider here some of the general problems
which have not been explored, but which seem to be
important in a more comprehensive understanding of
the elementary particles.

1. The hyperoes. In order to incorporate the strange
particles into our picture we would have to increase
the dimensions of the fundamental field unless we do
further unconventional things (see below). The simplest
possibility from the point of view of quantum numbers
would be to add a bare A-particle field as was originally
proposed by Sakata. " We would then postulate, in
addition, the generalized p5 symmetry, which would
mean the invariance of the left-handed and right-handed
components separately under the unitary transfor-
mation among the three fields or some subgroups of it.
The mass splitting of the three baryons will be obtained

"R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).' M. L. Goldberger and S. B. Treima») Phys. Rev. 1Ils 356
(1958)."J.Bernstein et al. , reference 16.

ro S. Sakata, Progr, Theoret. Phys. (Kyoto) 16, 686 (1956).

from bare masses of similar magnitude, which destroys
the otherwise rigorous symmetry.

This approach will produce easily the pions and
E mesons and probably more, and their masses can
again be related to the baryon bare masses. But we
do not yet have a comparable dynamical method to
predict Z and particles. Consequently, we shaH not
be able to say whether or not the present model is
dynamically satisfactory in this respect.

Z. The Ieptoes In c. onnection with the above model
we are naturally led to the lepton problem. Gamba,
Marshak, and Okubo" have pointed out an interesting
parallelism between the prtA and vetr triplets. As was
remarked in the beginning, our theory gives a special
incentive for speculation about this relation because
we have obtained two solutions: one ordinary and one
extraordinary, differing in masses. Could they both be
realized in nature simultaneously? According to our
results in I, the answer is no because they belong to
different Hilbert spaces. Moreover, the trivial solution
gives rise to unphysical mesons at least under the
assumption of fixed cutoff, with a large mass (—tr'&A')
but not necessarily a weak coupling (G'&A'/p, ').
Nevertheless, it would seem too bad if Nature did not
take advantage of the two solutions. A straightforward
way to make the two solutions co-exist in the same world
is obviously to postulate that the world is represented
by the direct product of two Hilbert spaces":

ac=ac(» g se(-),

built upon the vacuum state

n=n«) g n(-).

(6.1)

(6.1')

It is true that this is effectively the same as doubling
the fields, but here the choice of the two solutions
(particles) is dictated by the dynamics of the original
nonlinear theory. In order to describe this situation,
we may adopt an effective Lagrangian

I —L (1)+I(2) (6.2)

~ (rn) g~ (m,)

According to our plan, we must say that we happen to
live in the first subspace. LIn the second space, the
masses of vep, and prtA are interchanged, whereas in
the third (fourth) case we have two kinds of leptons
(baryons). j

"A, Gamba, R. E. Marshak, and S. Okubo, Proc. Natl. Acad.
Sci. U. S. 45, 881 {1959);Z. Maki, M. Nakagawa, Y. Ohnuk. i,
and S. Sakata, Progr. Theoret. Phys. 23, 1174 (1960).

'~ S. Okubo and R. E. Marshak, Nuovo cimento 19, 1226 {1961),
have independently proposed a similar idea. We thank the authors
for valuable comrnunicg, talons.

where each of the I.(" has the same form, only differing
in the charge assignments of the respective triplet
fields. The Lagrangian obviously yields four subspaces

~ (o) g~ (~) ~ (~)(agg (o) ~ (0) 13~ (o)
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So Iar there is no interaction between leptons and
baryons (except the electromagnetic, which is trivial).
To introduce the weak interactions, we may, for
example, add to Eq. (5.2) a third nonlinear term
involving all the (left-handed) fields. This would
complete our program of dealing with the strong and
weak interactions.

But, of course, it is not yet a truly unified theory;
the weak interaction is introduced only as an ad Aoc

additional process. Moreover, we do not know the
mathematical consistency of such a procedure, because
the additional interaction, if taken seriously, may
qualitatively affect the baryon and lepton solutions we

already have.
There is an alternative, but less drastic scheme;

namely, to assume six different fields from the be-
ginning, of which three (becoming eventually the
baryon fields) have additional strong interactions in
the Lagrangian. This may not be devoid of elegance
if the interaction is mediated by a vector Bose field
coupled to the baryon charge. The intermediate bosons,
including the photons and possibly also the weak
bosons, could then be interpreted as the agents that
distinguish between diferent components of the bare
fermions, which otherwise would enjoy a high degree
of symmetry.

We would like to throw in another remark here that
there may be also a possibility of utilizing the ordinary
and extraordinary solutions in distinguishing between
electron and muon, or baryons of different
strangenesses.

3. The ys irteariartce for gerteral systems In our.
theory the p5 invariance is a very essential element.
It is a particular symmetry which exists in the
Lagrangian, but is masked in reality because of the
(approximate) degeneracy of the vacuum with respect:
to that symmetry. We have used the pion and the

P decay in support of the assumption. In order to firmly
establish its validity, however, we must try to find
more evidences. For one thing, the induced pseudo-
scalar terms in nucleon P decay and p, capture should
be examined more closely.

Furthermore, if such a symmetry is to have a general
meaning, we must be able to consider partially con-
served currents for processes such as

I'~ = &~V,vs+ (mz+ms)Vsq, /(q'+t .') 5Fi~(q')
+s ys&ovqvF 2A (q )

(mz+my)F tg(0)/G. (ZA) =g., (6 6)

if the relative Z-A. parity is even. The vector current
conservation is also violated because of the Z-A mass
diGerence, and it looks as though this would predict a
corresponding scalar meson term. However, the analogy
is rather superficial. Firstly, the violation disappears
if m~ ——m&, , in which case there would be no need for a
scalar meson. The Z-A mass diRerence itself might be
due to the breakdown of the p& symmetry. Secondly,
it is an "unfavored" transition (b.T=1), so that the
vector part, corresponding to the off-diagonal element
of the isospin current, should vanish in the ideal limit
of strict isospin invariance and q ~ 0. In other words,
we expect

rv=Lq'ip„—(mz ms)q„)—Ftv(q')+a .q.Fsv(q') (6 7)

In case the Z-A parity is odd, '"" the vector and axial
vector parts will interchange their roles. The vector
part, which now looks like the axial vector current,
would have the form

r v =&q'iv„ps+ (m&+ms)vsq„jF rv (q')

+i iso„,q„Fsv(q'). (6.8)

The axial vector part can similarly be put in the form

ponent, and thereby the total axial vector current is
determined.

For superallowed transitions with spin ~~, the problem
is particularly simple, since it is the same as for the
neutron case. Thus for H'~He' we have the same
Goldberger-Treiman relation

(Mn+M it.)gg (H, He)/&2G„(H,He) =g, (6.4)

where g&, G now characterize the P decay and the
(unknown) pion coupling for the transition under
consideration.

Similar relations hold for the Z decays. " For the
2-Z case, we have

Zm.g. (ZZ)/G. (ZZ) =g. (6.5)

For the Z-A case, the axial vector vertex becomes'-

H ~He,
He6 ~ L16

Q],4 ~ N14

—&20,

—+A.

(6 3)

[iy„q„(mz mt, )/—(q'+tc. '—)f(q') ]Fig (q')

+a „„q„Fsg(q').(6.9)

But f(q') need not be =1 if the Z-A mass diBerence is
also due to the violation of the p5 symmetry.

There are other processes for which the chirality
conservation can be tested in a direct way. Although

An elementary definition of the "p5 transformation for
the general system is obvious: When the wave function
of a system is expressed in terms of the fundamental
(bare) spinors obeying the rules Eq. (2.1), the trans-
formation is unambiguously defined for each com-

"L. B. Okun', Ann Res Nucle.ar Sci 9, 6.1 (1959); M. .Gell-
Mann, Proceedings of the 1960 Annual International Coeferelce on
Iiigh Energy Physics at Roches-ter (Interscience Pubhshers, Inc. ,
New York, 1960), p. 522.

'4 We have in this case three independent terms.
s' See S. Barshay, Phys. Rev. Letters 1, 97 (1958); Y. Nambu

and J. J. Sakurai, ibid 6, 377 (1961). .
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extraordinary solutions are in general not eigenstates
of chirality (even under strict ps invariance), the
conservation law should still apply to the expectation
values of chirality. In fact, we can express the chirality
conservation law (X,)=(X~) for any rea, ction i —& f;
for example

p+pr ~ p+pr, p+~+sr', etc. ,

p+p~ p+ p, p+p+~, etc. ,

as a relation between the change of nucleon chirality
and the magnitude of the pion production amplitude.

The ideas outlined in this section will be taken up
in more detail elsewhere,

(c)

I IG. 2. Typical graphs considered in the evaluation
of the axial vector vertex.

We calculate here the renormalization of the axial
vector (Gamow-Teller) coupling constant g~ for
nuclear P decay under the following assumptions:

(1) Under strict pp invariance (Gursey type), there
is no renormalization, namely gz ——g~p (=gi p=gv),
where g~o is the bare coupling constant.

(2) The violation of the invariance gives rise to the
finite pion mass as well as the deviation of the ratio
E=gg/ggp=g~/gv from unity, so that there is a
functional relation between the two quantities.

Let us 6rst consider the isovector axial vector vertex
Fz in the usual perturbation theory. In our model, it
consists of various graphs, some of which are shown in
Fig. 2(a) and (b). The "ladder" graphs 2(a) have been
considered in I as well as in the present paper, since
they are intimately related to the pz gauge trans-
formation. In l (Appendix) we found that R) 1 when
both pseudoscalar and pseudovector type interactions
are present. "The graphs 2(b) have not been considered
yet. These will come into our consideration as soon
as we take corresponding higher-order approximations
for the self-energy, which was briefly discussed in I.
The chain of bubbles in these graphs will act like a
meson when there is such a dynamical pole LFig. 2(c)j.

The (divergent) renormalization effect due to
intermediate mesons is always negative, '" irrespective
of the type of the meson, so that the effect of these
meson-like bubble graphs is also expected to be similar.
When the chain does not produce a pole, however, the
effect can be opposite.

Combining all these sects, we have no way to predict
the resultant magnitude and sign of the renormali-
zation correction. So we simply assume these contri-
butions to cancel out under strict y5 invariance.

Next let us suppose that the invariance is slightly
violated. This will cause changes in the propagators

"See also Z. Maki, Progr. Theoret. Phys. (Kyoto) 22, 62 (1959)."Ke owe Dr. I, de Swart the mathematical check on this point.

in all these graphs. Most of these changes are, however,
quite small, being of the order of srsp/sm=ps/4ms, as
will be clear from the results of Sec. IV. The largest
eGect is naturally expected to come from the "pion"
contribution in Fig. 2(b), as this is a change from zero
mass (infinite range) to a finite one.

Let us accordingly take the effective pion graph from
Fig. 2(c) with an arbitrary pion mass p. Call its con-
tribution to the vertex renormalization (for zero
momentum transfer) A(p). Then according to the above
assumption

&=I'~( -)/g~ =I'~(u-)/I'~(o)

=1+A(~.) —A(0). (A1)

The difference A(p) —A(0) is convergent, which turns
out to be

G' ps ( 5ps q re
A(,)—A(0)= —

~
3—

~

ln—3
167rs ygs ( 2rris)

16@ (4tÃs 2) (2)
tail —'( —— [+ tan '] —(, (A2)

%3m E 3p,s 3) ~3~

where G is the phenomenological pion coupling
constant.

As was expected, this goes like (ps/ass) ln(siss/its) for
small p, which is more important than the contributions
from the neglected processes behaving like its/ass.

With (G'/47r)(Il, '/4m')=f'/4rr=0 08, Eq. (A2) .gives

'0.18
R—1—~

.0.24.
(A3)

The first figure is the entire contribution from Eq.
(A2), while the second is the contribution from the
leading logarithmic term alone. Experimentally, R is
estimated to be =1.25.28

' M. T. Surgy, V. E. Krohn, T. B. Novey, G. R, Ringo, and
V. L. Telegdi, Phys. Rev. 120, 1829 (1961).


