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Models of Cell Processes are Far from the Edge of Chaos
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Complex living systems are thought to exist at the “edge of chaos” separating the ordered dynamics of
robust function from the disordered dynamics of rapid environmental adaptation. Here, a deeper inspection
of 72 experimentally supported discrete dynamical models of cell processes reveals previously unobserved
order on long time scales, suggesting greater rigidity in these systems than was previously conjectured. We
find that propagation of internal perturbations is transient in most cases, and that even when large perturbation
cascades persist, their phenotypic effects are often minimal. Moreover, we find evidence that stochasticity and
desynchronization can lead to increased recovery from regulatory perturbation cascades. Our analysis relies
on new measures that quantify the tendency of perturbations to spread through a discrete dynamical system.
Computing these measures was not feasible using current methodology; thus, we developed a multipurpose
CUDA-based simulation tool, which we have made available as the open-source Python library CUBEWALKERS.
Based on novel measures and simulations, our results suggest that—contrary to current theory—cell processes
are ordered and far from the edge of chaos.
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I. INTRODUCTION

“The edge of chaos,” a term coined by Packard in 1988 [1],
refers to the tendency of adaptive systems to evolve toward
a dynamical regime that lies between order and disorder. In
systems biology, this is often referred to as the criticality
hypothesis [2], and it is closely related to work by Kauff-
man [3,4] and Derrida [5,6], who demonstrated that simple
tunable models of gene regulation exhibit an order-to-chaos
phase transition. Near this transition, it is conjectured, living
systems optimally balance the rigidity required to function in
a noisy environment with the flexibility required to undergo
developmental, metabolic, and evolutionary processes that de-
pend on cellular context. Dynamically, the boundary between
order and disorder is often understood through the lens of
trajectory separation; here, we seek to understand it through
the lens of phenotypic fragility and its inverse counterpart,
robustness.

The fragility of a cellular phenotype describes how easily
it transitions to a different phenotype, and determines, for
example, a cell’s ability to differentiate, its susceptibility to
oncogenesis, and the fidelity of its signal processing. This
has been measured experimentally by genetically or phar-
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macologically perturbing genes and measuring the impact
on cellular phenotypes [7–9]. In the context of dynamical
models of biomolecular networks governing cell processes,
the traditional approach to understanding phenotypic fragility
is inspired by the analysis of random Boolean networks
(RBNs), and it considers the propagation of a large, temporary
disruption to an individual component of the system (e.g.,
the depletion of a protein) [4]. In other words, an initial
perturbation, on average, decays to extinction in the long-
term dynamics of ordered (robust) systems, but it grows and
spreads globally in the disordered (fragile) case.

In RBNs, the average short-term propagation of initial per-
turbations, as measured by the Derrida coefficient, is sufficient
to determine the average long-term spreading behavior [5,6].
The Derrida coefficient measures one aspect of a defining
feature of chaos: extreme dependence on initial conditions. It
is closely related to the sensitivity of a Boolean network [10],
and its logarithm can be interpreted as a discrete analog of the
Lyapunov exponent [11]. For infinite-size Kauffman RBNs
there is a rigorous connection between the Derrida coefficient
and the long-term trajectory separation, which serves as an
order parameter [11]. The Derrida coefficient thus indicates
the critical boundary between the ordered and disordered dy-
namical regimes in RBNs, which occurs when its value is 1
[10].

Nonrandom, experimentally supported Boolean networks
are popular tools for modeling biomolecular functional mod-
ules (regulatory mechanisms and pathways governing specific
cell processes) [12,13]. As more of these models are con-
structed, one can ask whether an ensemble of such models
exhibits properties similar to those of RBNs. In fact, many
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do have Derrida coefficients near 1 [14–16]. This observation
lends support to the criticality hypothesis, but some caution
is required; in the context of finite (and especially nonran-
dom) Boolean networks, the terms “order” and “chaos” are
somewhat ill-defined. Unfortunately, there is no universally
agreed-upon definition for these terms that is fully agnos-
tic to the modeling framework (e.g., that applies equally to
deterministic ODEs and to stochastically updated Boolean
networks). Traditionally, the Derrida coefficient has been used
to distinguish the ordered and chaotic regimes in the context
of both thermodynamic RBNs and experimentally supported
finite Boolean networks [5,6,10,14,17–19]. Alas, the connec-
tion between short-term and long-term sensitivity to initial
conditions in thermodynamic RBNs does not necessarily
generalize to finite systems or to ensembles of nonrandom
systems. Thus, one must assess the Derrida coefficient’s abil-
ity to describe whether a finite, nonrandom (and possibly
externally driven or stochastic) system exhibits characteristics
typical of chaotic systems. Chief among these characteristics
is sensitivity to initial conditions on long time scales. With
this in mind, we consider that a finite nonrandom Boolean
network is more ordered if its long-term behavior is less
sensitive to initial conditions, and more chaotic or disordered
if a perturbation to initial states shows long-term growth on
average.

In this work, we challenge the assertion that existing non-
random Boolean models cluster on the boundary between
order and disorder by using biologically grounded measures
of phenotypic fragility. Our analysis of these models reveals
highly ordered perturbation responses that are obfuscated in
the usual approach based on the Derrida coefficient and tra-
jectory separation. We show that the criticality hypothesis is
not valid in a battery of experimentally supported models of
biomolecular networks, which represent the state-of-the-art
in causal modeling in systems biology (see below). Because
these networks model subsystems of whole organisms studied
in isolation, our results suggest that for the criticality hypoth-
esis to be true, criticality of living systems must arise as a
mesoscale phenomenon, through the coupling of (ordered)
functional modules.

Our testbed for this study is a curated collection of 72
experimentally supported, peer-reviewed Boolean network
models of biomolecular functional modules found in the Cell
Collective database [13], which represents the independent ef-
forts of dozens of research groups. In all of these models, each
included regulatory interaction is tagged with an experimental
justification from the systems biology literature. Each node in
these Boolean networks corresponds to a specific biomolec-
ular entity (e.g., gene, protein, or cellular subprocess). These
nodes each have two possible states at any given time step,
which represent the activity or inactivity of the corresponding
entity (e.g., transcription of a gene, phosphorylation of a pro-
tein, or initiation of a cellular process). The states of the nodes
are governed by Boolean update functions, which convert the
states of a node’s regulators into a binary output. Time is
usually modeled as an implicit variable in these systems, and
there are various methods for scheduling the update of vari-
ables. Though the steady states of the network are independent
of update scheme, the oscillatory behavior of the system is not
[20–22].

Indeed, the update scheme has a dramatic impact on the
long-term dynamics of random networks along the order-
to-chaos critical boundary [23–25]. In nonrandom models,
however, rich dynamical behaviors can persist across update
schemes, as illustrated in [26], though to our knowledge this
has not previously been studied systematically. By thoroughly
examining the impact of the update scheme on experimentally
supported models, we characterize their response to perturba-
tions in the timing and synchronization of regulatory events
to explore population-level order and robustness in these sys-
tems.

In this work, we consider two extreme (and quite com-
mon) schemes: synchronous update and asynchronous update.
These schemes have various tradeoffs, and either can be valid
or invalid depending on modeling context. In the synchronous
update, every node updates its state every time step. In other
words, the state of each node at time t + 1 is determined by
the state of its regulators at time t . This scheme produces
fully deterministic dynamics. Due to various analytical and
computational conveniences, synchronous update is a popular
scheme for very large random models. Synchronous update
treats all biomolecular events (e.g., gene transcription) as
simultaneous, which can sometimes lead to spurious oscilla-
tions. A common approach to removing these oscillations is
to consider asynchronous update schemes, though this risks
destroying meaningful oscillations as well. Here, we consider
a stochastic, asynchronous update scheme in which a single
variable is randomly selected (uniformly) at each time step
to be updated. This random selection introduces stochasticity
into the dynamics and destabilizes delay-sensitive oscillations
[21,22]. Thus, the asynchronous update can be viewed as a
kind of timing perturbation introduced to the synchronous
update.

We also take special care in handling the effect of source
nodes, which usually codify a cellular context or signals ex-
ternal to the model. Though such nodes are common in the
modeling literature, we demonstrate that they are statistically
rare in random models. Moreover, we show that source nodes
have a large impact on various measures of order in Boolean
networks. From a dynamical perspective, a “temporary” per-
turbation to a source node is unique in that it will always
become permanent; this stands in contrast to the behavior
of constant nodes, which recover immediately after pertur-
bation and are common in both random and experimentally
derived models. In many biological applications, a pertur-
bation to a source node is fundamentally different from a
perturbation within the core of the network because source
nodes often summarize the collective activity of many external
components.

We consider various measures of short-term and long-term
perturbation spread in both synchronous and asynchronous
update schemes and in the context of fixed or perturbable
source nodes using simulations. Previous work has focused
on the use of short-term perturbation dynamics and statistical
arguments as an avenue to estimate long-term dynamics in
large networks because of the immense computational bur-
den of ensuring that long-term perturbation measurements
converge [5,17,27,28]. To meet this challenge and directly
measure long-term perturbation growth in nonrandom models,
we developed CUBEWALKERS, a highly parallel GPU-based
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simulation toolkit, allowing us to quickly simulate many
thousands of trajectories in a network simultaneously. Our
software innovations, combined with the dramatic improve-
ments in computational power over the past several decades,
enable high-fidelity measurements of long-term perturbation
dynamics in real-world Boolean networks with hundreds
of nodes or more. These measurements are fundamental to
demonstrating the true dynamical regime of experimentally
supported biomolecular networks.

II. METHODS

A. Boolean network dynamics at the individual
and population level

Boolean networks describe the regulatory dynamics of
each node X by specifying its value following update, X �,
according to a Boolean update function FX : {0, 1}N → {0, 1}.
In this work, we apply a common abuse of notation in which
the form of FX is expressed via X �, because the subscript nota-
tion becomes cumbersome with long, biologically informative
variable names. We define two special types of node that have
unique effects on the dynamics: constant nodes, which have
update functions of the form X � = 0 or X � = 1, and source
nodes, which have update functions of the form X � = X .
More generally, update functions utilize the logical operations
“AND,” “OR,” and “NOT,” which we denote by ∧,∨, and ¬,
respectively. Each Boolean system with N nodes induces a
state transition graph whose 2N nodes represent all possible
system states and whose directed edges indicate that the par-
ent state can be updated in one time step to attain the child
(successor) state. The attractors of a Boolean system are the
terminal strongly connected components of the state transition
graph (i.e., they have no edges that exit the component). Point
attractors (also called steady states) consist of a single state,
and oscillatory attractors (also called complex attractors) con-
tain more than one state. The simplest type of oscillatory
attractor is a limit cycle, in which the system revisits states
in a deterministic order. The states that can reach an attractor
via edges or paths in the state transition graph make up the
basin of attraction of the attractor. In each network, the set of
possible attractors can strongly depend on the update scheme
used. Indeed, one of the most fundamental biomolecular cir-
cuit motifs, namely mutual inhibition, exhibits such behavior.
Consider two mutually inhibiting genes, A and B, described
by the simple Boolean network with update functions,

A� = ¬B, B� = ¬A. (1)

In the asynchronous update scheme, there are only two at-
tractors: the steady states (A, B) = (1, 0) and (A, B) = (0, 1).
In the synchronous update scheme, however, there is an ad-
ditional oscillatory attractor that cycles between the states
(A, B) = (0, 0) and (A, B) = (1, 1). Thus, the behavior of an
individual instance of a model (i.e., a single cell) is highly
sensitive to the timing of the node update. This example
highlights, however, that the average behavior of many in-
stances (i.e., the population-level behavior) can be robust to
update timing even when individual instances (cells) are not.
To see this, consider the average activation value of gene A (by
symmetry, the same analysis applies identically to gene B).
Assuming uniformly sampled initial conditions and allowing

enough time for convergence into an attractor, we observe
that in the asynchronous scheme, an individual cell has a
50% probability of being in the (A, B) = (1, 0) steady state
and a 50% probability of being in the (A, B) = (0, 1) steady
state; thus, overall, the average value of A in the ensemble
is 0.5. In the case of a synchronous update, the system has
a 25% probability of being in either steady state, and 50%
probability of being in the oscillatory attractor. The average
value of A (and also of B) in the oscillatory attractor, however,
is 0.5, and thus, overall, the average value of A in the syn-
chronous update is also 0.5, just as it is in the asynchronous
case. This behavior need not hold in general. To quantify
the extent to which this behavior occurs in the test models
considered, we compare the converged average node values
under synchronous and asynchronous update schemes, and we
compute the root-mean-squared (RMS) difference between
the synchronous and asynchronous average node values across
all nodes of a model, which we discuss in detail in Sec. III A 2.

B. Models considered

Throughout this work, we consider 72 models from the
Cell Collective [13] and their dynamical properties. In some
cases, nodes whose update functions are constants in the orig-
inally published version of a model have been reinterpreted as
source nodes in the Cell Collective, or multiple source nodes
have been merged. In such cases, we defer to the original
publication; in most cases, this results in replacing the update
functions for several source nodes with constant-value update
functions. In addition, we correct a few typographical errors
in the models, remove isolated nodes, and enforce constraints
that were not previously enforced when multiple nodes en-
code more than two values of a single entity (e.g., low,
medium, or high concentration of a protein). In all, 18 models
are affected in some way. We use these modified versions of
the models here in an attempt to more accurately capture the
biology represented in these models. Overall, we observe very
little difference in the distributions of the measures considered
when compared to the unaltered Cell Collective ensemble,
though for some measures, the differences in individual mod-
els can be large for measures that emphasize the role of source
nodes (comparisons provided in Fig. 13 in Appendix F).

We also highlight several models with particularly in-
teresting dynamical features. Throughout this work, these
highlighted models are indicated by colored symbols. The
shape of the symbols in various plots (whether highlighted
or not) describes the biological category of the model whose
parameters are plotted. This correspondence is summarized
in Fig. 1.

C. Simulation and analysis software

To compute various dynamical measures, including those
introduced here, we developed the CUBEWALKERS Python li-
brary, a CUDA-based Boolean network simulator. It supports
various update schemes (including user-specified schemes),
node and edge control interventions, and probabilistic update
rules. To simulate Boolean networks, CUBEWALKERS parses
Boolean update functions given either in algebraic form or as
lookup tables. Parsed rules are compiled into a CUDA kernel
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FIG. 1. Legend indicating model categories (marker shape) and specific highlighted models (marker color).

via the Python interface CUPY [29]. During simulation, CUBE-
WALKERS executes this kernel on an array of state vectors,
with each state vector representing the values of the nodes in
a single network instance, or “walker.” Updates for the nodes
of each walker are computed in parallel on the GPU for each
time step according to the chosen update scheme. We obtain
a speed-up of up to approximately 11 000 times compared to
previous tools [30,31] (see Appendix A for benchmarks).

In most experiments, we use at least W = 2500 indepen-
dent simulations (walkers) to obtain an expected standard
deviation in the average node values of less than 0.01. This
convergence is remarkable because it reveals that average
node values can be accurately calculated in large network
models using a relatively small sample size. In a network with
50 nodes, for example, a sample of W = 2500 initial states
represents just over two trillionths of the state space, but is
sufficient to calculate average node values at a given time step
to within a few percent. Other measures we compute require
more walkers to achieve the same desired accuracy; in the
most extreme case, we used W = 800 000 walkers. We chose
the number of time steps to simulate such that the largest
per-node disagreement across four equal averaging subinter-
vals was acceptably low for all Cell Collective models (below
0.0066 in the worst case, and significantly lower in most
cases). In most cases, 55N + 6000 time steps were sufficient,
but three Cell Collective models required additional simula-
tion time. Further details and numerical tests supporting the
simulation parameters used are provided in Appendix B.

D. Dynamical measures

The growth of small perturbations in Boolean networks
is widely viewed as the hallmark of chaos in these systems
[27]. In random models, this is often studied using the Derrida
map, which relates the size of a perturbation at time t0 to the
size of a perturbation at time t0 + 1. The Derrida map can be
computed by sampling many pairs of initial states that differ
in h variable values and evolving each pair of states using
one synchronous time step. The average separation (Hamming
distance) of the pairs becomes the numerical estimate for the
value of the Derrida map at h [5,6]. In principle, the states
reached after one time step might not be distributed uniformly
in the state space, so the Derrida map does not necessarily
predict whether small perturbations grow or shrink in the
long term. In random Boolean networks in the thermodynamic
limit (N → ∞), however, whether the fixed point of the Der-
rida map is a finite fraction of the network is determined by

the value of the map at h = 1. This value is called the Derrida
coefficient and is equal to the average sensitivity of the net-
work [10,14]. Perturbations tend to spread to a finite fraction
of the network only if the Derrida coefficient is greater than
1; this corresponds to the chaotic regime. When the Derrida
coefficient is less than 1, the system is in the ordered regime in
which perturbations tend to die out. A phase transition occurs
on the critical boundary where the Derrida coefficient is equal
to 1. Dynamically, the Derrida coefficient can be defined as

δ =
〈

1

N

N−1∑
i=0

‖X (t f ) − X (¬i)(t f )‖1

〉
X∈T

. (2)

In this formula, X is a time-dependent vector of node
states, T is the set of all trajectories in the system, and 〈·〉X∈T
denotes the average taken over all possible trajectories, where
the initial conditions and update schedules are sampled uni-
formly. The trajectory X (¬i)(t ) is the trajectory that initially
differs from X (t ) only in position i and is updated in the same
way as X (t ) at every time step (this is important in stochastic
update schemes). The comparison time t f is chosen such that
N node updates are performed, and thus is equal to 1 in the
synchronous update and to N in the asynchronous update.
The summand ‖X (t f ) − X (¬i)(t f )‖1 is the L1-norm (absolute
difference summed, or, for Boolean inputs, the Hamming dis-
tance) between X (¬i)(t f ) and X (t f ) at time t f .

In addition to the Derrida coefficient, δ, we consider three
other measures to describe the response of systems to small
(single-node) perturbations: final (average) Hamming dis-
tance h∞, quasicoherence q, and fragility ϕ. We illustrate the
intuitive meaning of these measures in the case of a single-
node oscillator A� = ¬A in Fig. 2.

The final Hamming distance h∞ is a direct measure of the
long-term separation between trajectories that initially differ
in a single node’s value. It is defined as

h∞ =
〈

1

N

N−1∑
i=0

〈‖X (t ) − X (¬i)(t )‖1〉t→∞

〉
X∈T

. (3)

Here, 〈·〉t→∞ indicates the average taken from any finite
initial time t = t0 to t = ∞; note that the value of the time
average does not depend on the value of t0. Intuitively, h∞
measures the asymptotic separation (on average) between all
trajectory pairs that initially differ in only one node value.
Note that the Hamming distance ‖X (t ) − X (¬i)(t )‖1 does not
necessarily converge for large t (it may oscillate), necessitat-
ing the time average calculation.
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FIG. 2. Comparison of four perturbation response measures
(bold box borders) for a one-node oscillator. The unperturbed oscil-
lator alternates between two states: its initial state A, which could be
0 or 1, and the opposite state, ¬A, which is 1 if the initial state is 0,
and 0 if the initial state is 1. The perturbed trajectory begins with the
oscillating node in the opposite state compared to the unperturbed
trajectory, but otherwise its time evolution proceeds in the same
fashion. At each time step t , the Hamming distance ht is computed.
In the special case of t = 1, h1 is the Derrida coefficient δ, which
evaluates to 1 in this case. Indeed, ht = 1 for all t , so the asymptotic
average of the Hamming distance, which we call the final Hamming
distance (denoted h∞) evaluates to 1 as well. Alternatively, we can
compute and compare the average behavior of the two trajectories.
In both cases, the node is in the 0 state for half of the time steps,
and in the 1 state in the other half. Thus, the average node value is
0.5 for both trajectories, and the fragility ϕ, defined as the difference
in these averages, is 0. Furthermore, we can consider a more coarse-
grained averaging, where we compute the probability that a randomly
perturbed node (in this example there is only one node to choose
from) results in a different quasiattractor, i.e., a different pattern of
fixed and oscillating nodes; the complement of this probability is
a measure of robustness we call the quasicoherence. In this case,
perturbing the initial state always results in the same quasiattractor
(in which the sole node oscillates), so the quasicoherence is 1.

The h∞ measure is sensitive to phase shifts; if X (t ) and
X (¬i)(t ) converge to the same limit cycle, for example, but are
offset, ‖X (t ) − X (¬i)(t )‖1 can be nonzero for all time even
though the trajectories have the same long-term behavior. To
distinguish this case from the case when X (t ) and X (¬i)(t )
converge to different attractors, we propose two additional
measures.

The first of these is the fragility ϕ, which we define as

ϕ =
〈

1

N

N−1∑
i=0

‖〈X (t )〉t→∞ − 〈X (¬i)(t )〉t→∞‖1

〉
X∈T

. (4)

It is expressed in the same way as h∞, but the time aver-
aging occurs inside the L1-norm, rather than outside it. This
removes sensitivity to phase shift, and it can be interpreted
as a measure of separation in average values, rather than
as an average separation. From a biological standpoint, this
is desirable when a pair of trajectories with a high average
separation but the same average behavior (as happens if the
trajectories are time-shifted but otherwise identical) should
be interpreted as phenotypically equivalent. Such trajectories
may represent cells that are at different points of otherwise
identical cell cycles. As a simple example, consider the system
A� = ¬A; B� = B. Here, there are only two attractors in either
update scheme: A will always oscillate, and B can be fixed
in either value. If B is perturbed, the original and perturbed
trajectories will always agree in A and differ in B, while if
A is perturbed, the opposite is true and the system simpli-
fies to the example of Fig. 2. This conclusion holds in both
synchronous and asynchronous update schemes because, in
the latter, we constrain the selection of the update node to
always be the same in both trajectories. Thus, h∞ = 1 for
this system in both update schemes. In the case when A is
perturbed, however, the average value of A does not differ
between the two trajectories, and thus, as in the case of Fig. 2,
this perturbation contributes 0 to ϕ. As perturbations to B do
alter the average value of B, they contribute 1 to ϕ and we
therefore find ϕ = 0.5 in this system overall. This indicates
that half of the long-term trajectory separation due to single-
node perturbations stems from time-lag effects, which are not
necessarily biologically relevant. Some caution is required in
this interpretation, however, as it is possible that two distinct
attractors may have the same average behavior at the node
level. We note that such differences would likely be extremely
difficult to distinguish in a laboratory setting, and we do not
observe any such attractor pairs in the networks studied here.

Another measure that can distinguish phenotypic differ-
ences from phase shifts is the quasicoherence q, which is
closely related to the coherence measure introduced in [32].
Coherence is defined as the fraction of (X (t ), X (¬i)(t )) pairs
that converge to the same attractor; in [32], coherence was
defined only for synchronous update, but the extension to the
asynchronous case is trivial. The primary barrier to adopting
coherence as a measure is that attractor identification can be
computationally expensive, sometimes prohibitively so. We
therefore define and adopt quasicoherence as an alternative,
which is defined as the fraction of (X (t ), X (¬i)(t )) pairs that
converge to the same quasiattractor. Slightly modifying the
convention of [33], we define a quasiattractor to be a pattern
of fixed-node values and oscillating nodes exhibited by an
attractor. Two (or more) attractors may correspond to the same
quasiattractor if they share the same set of active nodes, the
same set of inactive nodes, and the same set of oscillating
nodes. As a simple example, consider A� = B; B� = C; C� =
A. In the synchronous update, this system has four attractors:
{000}, {111}, {001, 010, 100}, and {110, 101, 011}. In con-
trast, there are only three quasiattractors: 000, 111, and � � �,
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where � denotes that the node oscillates in all attractors that
correspond to the quasiattractor. The quasicoherence can be
written as

q =
〈

1

N

N−1∑
i=0

Q(〈X (t )〉t→∞, 〈X (¬i)(t )〉t→∞)

〉
X∈T

, (5)

where Q : [0, 1]N × [0, 1]N → {0, 1} is defined such that
Q(X ,Y ) is 1 if for all indices i, it holds that X i = 1 ⇐⇒
Y i = 1 and X i = 0 ⇐⇒ Y i = 0; otherwise Q(X ,Y ) is zero.
The quasicoherence is 1 if all perturbed trajectories converge
to the same quasiattractor as their unperturbed counterparts,
and it is 0 if an initial perturbation to a single node always
results in a different quasiattractor.

The quasicoherence, unlike the final Hamming distance
and fragility, does not distinguish between the case when
trajectories converge to very similar (but not equal) steady
states from the case when they converge to very different
steady states. Because the time averaging is conducted be-
fore comparison, it is not sensitive to phase shifts either.
The quasicoherence is useful when long-term changes in the
expression of even a small number of genes are phenotypically
important. The fragility and quasicoherence are related to each
other in that the fragility can be interpreted as a rescaled
“fuzzy” version of the quasicoherence, as explained in
Appendix C.

We compute these dynamical measures (h∞, q, and ϕ)
numerically for each network in the Cell Collective using a
simulation-based approach. First, we sample 2500N initial
states, produce a copy of each, and perturb each copy in
exactly one node (for a total of 5000N initial states). Each
initial state is evolved forward in time for T = Tb + Tw time
steps, and the various time averages are taken over the last
Tw time steps, as described in Appendix B. This is done
in both the synchronous and asynchronous update schemes.
The Derrida coefficient is computed using one synchronous
time step or N asynchronous time steps using 100 000 initial
samples (for a total of 200 000 initial states when considering
the perturbation).

In addition, to probe the effect of source nodes (nodes
whose update functions are of the form A� = A) in Boolean
networks, we consider “fixed source” versions of these five
measures in which the perturbed nodes may not be source
nodes and in which all instances of N in the formulas
are replaced by the number of nodes that are not source
nodes. Importantly, constant nodes remain perturbable in
these cases, as do nodes that become fixed as a direct con-
sequence of the source node values. All other parameters are
unchanged.

Taken together, this results in four variations of each mea-
sure: two possible choices of update, indicated by a subscript
s for synchronous and a for asynchronous, and two possible
choices for how to treat source nodes, indicated by subscript
f or p for fixed source nodes or perturbable source nodes,
respectively. For example, ϕs, f indicates the fragility com-
puted using the synchronous update and not allowing for
source nodes to be perturbed, while ϕa,p indicates the fragility
computed using the asynchronous update and allowing source
nodes to be perturbed. In total, we consider 16 measures of
node perturbation response. The four variants of the Derrida

coefficient δ measure short-term perturbation response. The
four variants of the final Hamming distance h∞ measure
long-term perturbation response in a manner that is sensitive
to phase shifts. The four variants of the fragility ϕ measure
long-term perturbation response in a manner that is insensitive
to phase shifts. Finally, the four variants of the quasicoherence
q measure the probability that a node perturbation does not
induce a long-term change in quasiattractor.

III. RESULTS

A. The effects of synchronization perturbation

We first consider the effects of perturbations to the
synchrony of biomolecular events. By comparing network
dynamics under synchronous and asynchronous update, we
consider an extreme version of this timing perturbation in
which no two node states can update simultaneously. We
study this at the level of single networks (akin to studying
individual cells) and at the level of network populations (akin
to studying populations of cells). At the level of individual
networks, we examine the effect of perturbations on the range
of possible long-term behaviors, whereby a reduction of this
range corresponds to increased order. At the population level,
a synchronously updated network is timing robust if it retains
the average population-level behavior even when the syn-
chrony of the biomolecular events it encodes is disrupted. In
other words, a Boolean network exhibits a robust and ordered
response to timing perturbations at the population level if its
average node values do not depend (much) on the choice of
update scheme.

1. Synchrony perturbation confers order by destroying attractors

The attractor repertoire of Boolean models (and specif-
ically, the oscillatory attractors) depends on the update
scheme [20,22]. In general, there are more attractors under
synchronous update than under asynchronous update. As syn-
chronous update is deterministic, its oscillatory attractors are
always limit cycles. Attractors that only exist for synchronous
update rely on the exact timing of updates (such that multiple
nodes change state at the same time), and they disappear in the
case of variations of the update timing, causing the system to
have more orderly behavior [21]. We identify several models
in the Cell Collective with this property and characterize the
mechanisms underlying it by studying simplified models that
are obtained by percolating the fixed value of source nodes,
on eliminating a self-edge-free node and plugging in its up-
date function into the function of its targets [34,35], and on
merging nodes with similar regulatory roles.

In Appendix D, we discuss several models in detail, with
an emphasis on the biological implications of their update
scheme dependence or robustness. Three update-scheme de-
pendent models relevant to this section are the Cell Cycle
Transcription by Coupled CDK and Network Oscillators ( )
[36], Aurora Kinase A in Neuroblastoma ( ) [37], and Regu-
lation of the L-arabinose operon in Escherichia coli ( ) [38]
models. These have attractors under synchronous update that
vanish under asynchronous update. In the first two models,
these attractors are biologically meaningful and arise from a
delay-dependent interaction between a positive and negative
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FIG. 3. Distribution of update dependence in the Cell Collec-
tive. The root mean squared (RMS) difference between the node
values when using synchronous or asynchronous update, as defined
in Sec. II A, is shown. The peak near zero indicates a high degree
of timing robustness in the Cell Collective models. Representative
models are indicated by symbols according to Fig. 1.

feedback loop. In the third model, the additional attractors
under synchronous update are biologically spurious [38] and
arise from a positive feedback loop in a manner similar to the
example of Eq. (1). These models illustrate that the biological
interpretation of a Boolean network can depend strongly on
update scheme. Timing perturbations can destabilize oscilla-
tions that depend on specific delays between events by making
them stochastic. This can lead to a decrease in the range of
behaviors available to individual cells, ultimately resulting in
dynamics that are more constrained and orderly.

2. Timing-robust order emerges in cell populations

Though the attractor repertoire of models can be sensi-
tive to the update scheme at the level of individual cells,
we observe that robustness to timing perturbations typically
emerges at the cell population level. This suggests that popula-
tions of cells exhibit order that is not necessarily observable at
the individual level. In almost all cases, the difference between
the converged average node values in the synchronous and
asynchronous updates is extremely small (see Fig. 3). Notable
exceptions include the Colitis-associated Colon Cancer ( ),
Aurora Kinase A in Neuroblastoma ( ), and Cortical Area
Development ( ) models. These three models have the three
highest values of RMS difference and thus exhibit the least
orderly response to timing perturbation.

Models with no difference at all between update schemes,
such as the Toll Pathway of Drosophila Signaling Pathway
model [39], exhibit a kind of monostability in which only a
single globally stable fixed point exists for each combination
of source node values, regardless of update scheme; these
models are highly ordered. In some cases, a model is monos-
table for some, but not all, of its source node configurations;
the Regulation of the L-arabinose operon in the Escherichia
coli ( ) model [38] is one such example, and it illustrates
that a low RMS difference is possible in models with update-
dependent attractors. The model is monostable for 11 of the
12 biologically meaningful configurations of its source nodes
(which encode three levels of external arabinose, the presence
or absence of external glucose, and bound/unbound AraC
protein). In the last combination, there are two point attractors

and four update-dependent attractors. Despite this, as in the
example of Eq. (1), the average node values are not affected by
the additional attractors. Similarity between update schemes
can also arise in more subtle ways. For example, the Metabolic
Interactions in the Gut Microbiome ( ) model [40] is primar-
ily driven by a small, update-independent subnetwork. This
results in an update-independent attractor that dominates the
state space, with the remaining state space split between two
similar attractors (see Appendix D for details).

In cases when timing robustness fails to emerge, the
network typically has a large number of states that can
evolve to more than one attractor in the asynchronous up-
date. Under synchronous update, each of these states must
deterministically evolve to only one attractor. When these
states are heavily biased toward one attractor over another,
the network can exhibit desynchronization sensitivity. The
phenomenon explains the most extreme case of average node
value sensitivity to update scheme that we have observed:
the Colitis-associated colon cancer ( ) model [41]. In this
case, the behavior is driven by a small three-node subnetwork
that is highly update-dependent; we analyze this subnetwork
in detail in Appendix D, where we also examine the update
dependence of the full Cortical Area Development ( ) model
[42], together with an improved version also presented in [42].

We caution that careful consideration of the underlying
biology is always important when analyzing these models
and selecting an update scheme, even when population-level
average node values are fairly robust to timing perturbations.
For example, the Apoptosis Network ( ) model [43] has an
RMS difference in average node values that, though higher
than the median, is low in absolute terms (near 0.1; see Fig. 3).
Despite this, the likelihood of achieving apoptosis in this
model strongly depends on update scheme: apoptosis is twice
as likely under asynchronous update (see Appendix D for
details).

Though cases of update scheme dependence often high-
light interesting regulatory mechanisms, we emphasize that
population-level desynchronization robustness is by far more
common in the Cell Collective. In combination with the re-
sults of the previous section, this points to an order in the
average states of nodes that is hidden when these biomolecular
networks are viewed as isolated entities but that is revealed
when they are viewed as members of an ensemble.

B. The effects of transient state perturbations

In the previous section, we discussed the effects of timing
perturbations in Cell Collective models; we now consider the
effects of transient node perturbations in which the state of a
variable is temporarily altered. We emphasize the comparison
between the short-term response measured by the Derrida
coefficient (δ) and long-term responses measured by the qua-
sicoherence (q), final Hamming distance (h∞), and fragility
(ϕ), which are defined in Sec. II D and differ in how long-
term changes to trajectories are quantified. We also consider
the impacts of internal perturbations separately from those
of environmental changes by considering two cases for all
measures: perturbable and fixed source nodes, emulating a
variable or static cellular context, respectively.
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FIG. 4. Short- and long-term perturbation responses in the Cell Collective measured in a phase-sensitive way. In the “Robust” regime
(lower left quadrant) both short-term and long-term responses are below 1, which indicates perturbation extinction and is characteristic of
ordered dynamics. In the “Sensitive” regime (upper right quadrant) both short-term and long-term responses are above 1. This indicates
perturbation growth, which, in the extreme case, is characteristic of disordered or chaotic dynamics. The other two quadrants indicate cases
of disagreement between the short-term and long-term responses. The short-term perturbation response δ has a slight correspondence with the
long-term perturbation response under the specific setting when h∞ is monitored and synchronous update is used, in which the phase shifts
are conserved. The relationship between short- and long-term responses is stronger when source nodes are fixed (right panel). The dashed line
indicates the y = x diagonal. The symbols indicate the model categories and highlighted models as defined in Fig. 1.

1. The prevalence of source nodes in the models has a strong
influence on trajectory separation

Previous studies did not consider the fact that the vari-
ables of Boolean network models fall into two qualitatively
different categories: independent variables (represented by
source nodes in the network) and variables whose values
are determined by their interactions (represented by nodes
with incident edges in the network). Source nodes are rare
in most types of RBN ensembles. We determined (see Ap-
pendix E) that in any ensemble of finite random networks
obeying widely used independence assumptions, on average
more than 75% completely lack source nodes. This stands
in stark contrast to the Cell Collective; only nine of the 72
models we studied are source-free, and the average number of
source nodes in these networks is 4.94 (median 3, maximum
33) (see Fig. 12 in Appendix F for the full distribution).
Note that these statistics and the distribution of the number of
source nodes do not include constant nodes or source nodes
for which only one value is ever considered in the analysis of
a model’s original publication. The number of constant nodes
in random models is much less tightly constrained than the
number of source nodes, thus the frequency of constant nodes
in our test ensemble could plausibly be obtained in random
models (see Appendix E).

Dynamically and biologically, source nodes play an impor-
tant role. In biology parlance, they often describe the cellular
context, or configuration of the external environment and of
intracellular mechanisms outside the scope of the model under
study. Often, a change to the value of a source node represents

an enormous shift in this context. This is because a change in
the value of a source node is not a temporary dynamical per-
turbation, but a permanent alteration of the modeling context.
Dynamically, this is reflected in the distribution of δ and h∞ in
the Cell Collective ensemble (see Fig. 4). When source nodes
are perturbable in the synchronous update, we find that the
distribution of δs,p peaks very close to 1. This corroborates
previous observations[14,16] in Boolean models of biological
systems. However, an abundance of source nodes tends to in-
crease δ in these models, in some cases dramatically, because
the ultimate size of a perturbation that begins at a source node
is always bounded below by one (in contrast, constant nodes
tend to decrease δ because they are guaranteed to recover
from any perturbation). Furthermore, many Cell Collective
models are concerned with how signals, represented by source
nodes, are processed by cells, meaning that—by design—such
models tend to be sensitive to the values of these source nodes.

By isolating the effects of source nodes on the δ, we
can begin to understand the degree to which the overall per-
turbation response in cellular systems is governed primarily
by factors internal to specific functional modules (nonsource
nodes), or by the interplay between these modules and their
environment (source nodes). When we restrict attention to the
system’s response to internal perturbations only, we see that
δ is no longer centered near 1. Rather, the distribution shifts
dramatically to the “ordered” regime (below 1). For example,
the Metabolic Interactions of the Gut Microbiome ( ) model
has δ ≈ 1 when source nodes are candidates for perturbation
but only ≈0.39 when they are not. In the asynchronous case,
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defined in Eq. (2), δ is more tightly clustered, but overall,
δ shows very little dependence on the update scheme (see
Fig. 14 in Appendix F for a direct comparison). This suggests
that, on short timescales, the disorder that arises from node
perturbations does not couple with the noise that arises from
disruptions to update synchrony.

A few models do not follow the general trend and exhibit
δ higher than 1. One example is the Arabidopsis thaliana
Cell Cycle ( ) model [44], which has the highest value of
δ (greater than 1.2 in both update schemes). This 14-node,
source-free model has an abundance of regulators (average
in-degree of 4.71), a significant percentage of which (42%)
are negative regulators. The complexity of the regulation is
likely the reason for the high observed initial separation of
trajectories following an initial perturbation to a single node.

In the thermodynamic limit of random Boolean networks,
there is a very strong relationship between δ and h∞. Whether
or not this holds in the Cell Collective is investigated in Fig. 4.
The quadrants of the two panels of Fig. 4 show whether the
perturbation response indicates perturbation growth or decay
in the short- or long-term (perturbation growth being a hall-
mark of chaos). Following [18,45], the short-term perturbation
response of the models, as measured by δ, suggests ordered
dynamics in the bottom two quadrants and chaotic dynamics
in the top two quadrants, though we emphasize that, unlike
in random models, the short-term perturbation response seen
here is not necessarily predictive of the long-term response.
The long-term perturbation response, as measured by h∞, sug-
gests robustness (a hallmark of ordered dynamics) in the left
two quadrants and sensitivity (a hallmark of chaotic dynam-
ics) in the right two quadrants. In the Cell Collective models,
we observe a slight correspondence between δ and h∞ under
synchronous update. No correspondence of δ and h∞ was
found for asynchronous update (see Fig. 15 in Appendix F). It
is somewhat expected that the correspondence between δ and
h∞ would be stronger in synchronous update, where phase
shifts within oscillatory attractors are always persistent. In
contrast, phase shifts often decay in asynchronous update.
When source nodes are not perturbable, δ serves as an upper
bound for h∞ in the robust regime, and as a lower bound
for h∞ in the sensitive regime (see Fig. 4, right panel). For
fixed source nodes, h∞ varies wildly when δ ≈ 1, which is
characteristic of systems near a phase boundary. Note that
both δ and h∞ are skewed more toward the robust regime than
in the traditional approach of perturbable source nodes, shown
in the left panel.

When source nodes are not perturbable, h∞ decreases dra-
matically for many models (see Fig. 16 in Appendix F). This
is likely due to the large number of Cell Collective models
that describe how functional modules integrate and respond
to external signals, leading to a bias for source nodes with
significant downstream effects. For example, as previously
discussed, the Regulation of the L-arabinose operon in Es-
cherichia coli model ( ) is monostable in most of its input
configurations. This leads to very small h∞ when source
nodes are not perturbable, despite the fact that this model has a
slightly above-average h∞ when its source nodes are potential
perturbation targets.

Models of functional modules with more complex internal
dynamics, such as the Signal Transduction in Fibroblasts ( )

model [46], can also be greatly affected by source nodes.
This model stands out in its high value of h∞, despite its
only slightly elevated Derrida coefficient (δs,p = 1.12). This
130-node model describes the response of a specific cell type
to nine external signals (growth factors, cytokines, stress).
The model has a very large number of oscillating attractors
(hundreds for each input configuration). A key contributing
factor to this rich oscillating dynamics is the large fraction
(∼ 25%) of nodes with negative self-regulation in this model.
In addition, 32 out of the 44 nonmonotonic update functions in
the Cell Collective are found in this model. The signals mod-
ulate the complex internal dynamics, but do not completely
control them; thus the horizontal position of this model in
Fig. 4 is further to the left when source nodes are fixed (right
panel), but it remains the model with the highest h∞.

The Tumour Cell Migration and Invasion ( ) model [47]
stands out in that it has a low value of δ, but a high value
of h∞ in synchronous update when source nodes are per-
turbable (a similar, less extreme, pattern is observed under
asynchronous update as well; see Fig. 15 in Appendix F).
This model describes the processes necessary for cancer cell
metastasis, including an epithelial to mesenchymal cell fate
change, gain of motility, and the ability to invade the neigh-
boring tissue (these four phenotypes are represented by nine,
update-independent point attractors). The model’s two inputs
describe an internal signal (DNA damage) and an external
signal from the cell’s microenvironment. The nonmonotonic
change in time of the Hamming distance persists in the input
combination most relevant to cancer cells. One factor that con-
tributes to a low δ (below 1) is the strong canalization of the
model’s functions, which are biased heavily toward the “OFF”
state. This causes many perturbed trajectories to immediately
realign, resulting in a low δ. Though most trajectory pairs
quickly align, those that do not tend to dramatically increase
their separation, converging into very distinct attractors and
resulting in a higher h∞.

Collectively, the Regulation of the L-arabinose operon
in Escherichia coli model ( ), Signal Transduction in Fi-
broblasts ( ), and Tumour Cell Migration and Invasion ( )
models illustrate the strong influence of source nodes in con-
trolling the perturbation response. In the Regulation of the
L-arabinose operon in Escherichia coli model, the dynamics
are almost fully controlled by the source nodes. In the Signal
Transduction in Fibroblasts ( ) model, a great deal of dynam-
ical freedom remains even when source nodes are frozen due
to an abundance of self-inhibition and nonmonotonic regula-
tion, but the perturbability of source nodes exaggerates these
effects. In the Tumour Cell Migration and Invasion ( ) model,
the perturbation of source nodes produces a pronounced pat-
tern of initial perturbation decay followed by perturbation
growth due to extreme canalization of individual regulatory
elements.

2. Perturbation response beyond trajectory separation

In this section, we use two measures introduced in
Sec. II D, namely the quasicoherence q and fragility ϕ, to
illustrate that it is difficult to alter the long-term dynamics
of trajectories using small, internal perturbations. We demon-
strate, in Figs. 5 and 6, that careful comparison of the overall
behaviors of perturbed and unperturbed trajectories reveals a
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FIG. 5. Scatterplot of the synchronous quasicoherences of the
Cell Collective models when source nodes are (x axis) or are not
(y axis) candidates for perturbation (the asynchronous distribution is
available in Fig. 17 of Appendix F). When the values of source nodes
are fixed, the quasicoherence values are tightly clustered around
1, indicating a high degree of phenotypic robustness. The symbols
indicate the model categories and highlighted models as defined
in Fig. 1.

higher degree of orderlike robustness than is observable using
traditional measures alone. The bulk of this section is devoted
to uncovering the mechanisms that underlie this previously
hidden order in specific models. We identify three key factors
that give rise to disagreement between our new measures and
traditional measures: (i) the extreme potency of perturbations
to source nodes, (ii) the presence of oscillatory attractors that
can result in phase-shifted trajectories with the same long-
term behavior, and (iii) higher sensitivity to update scheme
in traditional measures.

The quasicoherence q describes the likelihood that a sys-
tem undergoes a long-term phenotypic change in response to
a small, transient perturbation. Higher q indicates a greater
degree of phenotypic robustness (see Sec. II D). Note that the
values of source nodes also contribute to the phenotype in this
context, and so the effect of allowing source node perturba-
tion is particularly pronounced for q. We find that overall,
the distribution of q in the Cell Collective (Fig. 5) is highly
concentrated near 1 for the fixed-source case (see also Fig. 17
in Appendix F). This indicates that it is relatively difficult
to alter the phenotype of a functional module within a cell
by perturbing a single internal component. Indeed, no model
has greater than a 60% chance to change the quasiattractor
due to perturbation to a random node; when source nodes are
excluded from the set of perturbable nodes, this bound drops
to just over 20%. An example of low quasicoherence is the
Cortical Area Development Network ( ) model [42], which
has two attractors; the symbol lies on the diagonal because
this model has no source nodes.

FIG. 6. Short- and long-term perturbation responses in the Cell
Collective measured in a phase-insensitive way. In the “Robust”
regime (lower left quadrant), both short-term and long-term re-
sponses are below 1, which indicates perturbation extinction and is
characteristic of ordered dynamics. In the “Sensitive” regime (upper
right quadrant), both short-term and long-term responses are above
1. This indicates perturbation growth, which, in the extreme case,
is characteristic of disordered or chaotic dynamics. The other two
quadrants indicate cases of disagreement between the short-term
and long-term responses. In contrast with the traditional approach
depicted in the left panel of Fig. 4, this figure illustrates perturbation
response when source nodes and phase shifts are accounted for. Most
models show a substantially more robust perturbation response when
these factors are taken into consideration. The symbols indicate the
model categories, and highlighted models as defined in Fig. 1.

The distribution of q in the Cell Collective is fairly robust
to update scheme, though there are exceptions. For example,
note that Cell Cycle Transcription by Coupled CDK and Net-
work Oscillators ( ) model has relatively low quasicoherence
in the synchronous update, but a maximal quasicoherence in
the asynchronous update (see Fig. 17 in Appendix F). The dif-
ference arises because the asynchronous update gives rise to
only a single attractor (a steady state) while the synchronous
update gives rise to an additional oscillatory attractor. In this
case, the timing perturbations have interfered with the node
perturbations in the system by destroying an attractor that is
required for long-term separation of trajectories. The fragili-
ties ϕ of the Cell Collective models also exhibit a distribution
that is generally robust to the update scheme, and a shift
to lower values when source nodes are not candidates for
perturbation (see Fig. 18 in Appendix F).

Separate from quantifying whether or not a perturbation
induces a change in phase-shift-corrected long-term behavior
(via q), we also quantify the magnitude of such changes using
ϕ. Figure 6 summarizes the relationship between δ and ϕ

under synchronous update with fixed source nodes. Note that
only two models exhibit long-term perturbation growth (a
hallmark of chaotic dynamics) once source nodes and phase
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shifts are accounted for, and the vast majority of the models
are firmly in the robust regime of the ϕ distribution (associated
with ordered dynamics). In contrast, the traditional analyses
(e.g., [18,19,45]) place the majority of the models close to the
critical boundary between the ordered and chaotic regimes,
and also place several models in the chaotic regime (left panel
of Fig. 4). We found no correspondence of δ with ϕ regardless
of the manner of update or the perturbability of source nodes.
Furthermore, unlike in the case of h∞, the ϕ distribution
shows little dependence on the choice of update scheme. (See
Fig. 15 in Appendix F for a comprehensive figure combining
Figs. 4 and 6 with five other similar plots). This suggests that
the ability of δ to predict long-term perturbation response is
sensitive to phase-shifts and can overestimate the disruption a
perturbation is likely to cause to a system’s phenotype.

As we illustrate with several examples below, it is often
possible to reveal a robust order in apparently chaotic pertur-
bation responses of specific functional modules by carefully
analyzing the patterns of oscillation that perturbed trajectories
undergo.

As highlighted previously in Fig. 4, the Signal Transduc-
tion in Fibroblasts ( ) model [46] has a very high value of h∞
in the synchronous update (>3 when the source nodes can be
perturbed and 2.3 when they cannot), and δ only slightly above
1. Asynchronous update decreases h∞, but h∞

a,p and h∞
a, f still

indicate perturbation growth (see Fig. 15 in Appendix F). Due
to the abundance of oscillating attractors in this model, large
responses to perturbations may be expected. Despite this, ϕ

is less than 1 in both update schemes in this model when
source nodes are fixed, meaning that at the phenotype level,
perturbations to individual nodes eventually decay on aver-
age. In other words, the majority of the perturbation response
observed through the lens of h∞ is due to the effect of shifting
the phase of a trajectory without altering its phenotype. The
Aurora Kinase A in Neuroblastoma ( ) model is a smaller
model that exhibits similar behavior.

The Arabidopsis thaliana Cell Cycle ( ) model [44] is
also in the regime traditionally associated with chaos when
synchronous update is used to compute δ and h∞ (Fig. 4),
but a closer look reveals a robust phenotype. The original
article reported an 11-state cyclic attractor under synchronous
update, which recapitulates the phases of the cell cycle, and
in which all 14 nodes oscillate. This model’s response to an
initial perturbation to a single node is the highest observed
(δ > 1.2 in both update schemes). In the synchronous update,
this initial separation persists, and even grows somewhat in
the long term (reaching an average of over 1.7). Because there
is only one attractor in this system, and because synchronous
attractors are always simple cycles, this separation is due to a
phase shift; indeed, the fact that the synchronous fragility of
this model is zero reinforces this (Fig. 6). In the asynchronous
update, both the fragility and the final Hamming distance are
zero, indicating that this model exhibits a long-term robust-
ness under the asynchronous update that is not detected by
δ. The difference in long-term separation in the two updates
reflects the fact that phase shifts are always permanent in
the deterministic synchronous update, but can be temporary
in the asynchronous update if there is an order of update
that causes two trajectories in the same complex attractor to
intersect. Indeed, there is a general tendency for a smaller final

Hamming distance under asynchronous update than under
synchronous update (see Fig. 16 in Appendix F). Furthermore,
Fig. 19 in Appendix F suggests that phase-shifting behavior of
the Arabidopsis thaliana Cell Cycle ( ) model is a common
phenomenon; the final Hamming distance is always larger
than or equal to the fragility in both update schemes, with an
especially prominent difference in synchronous update.

There are two models that stay in the chaotic regime
according to both h∞ and ϕ, the Human Gonadal Sex De-
termination ( ) model [48], and the Colitis-associated Colon
Cancer ( ) model [41]. These two are the only models with
ϕ > 1 when source nodes are not candidates for perturbation.
The fragility of The Human Gonadal Sex Determination ( )
model is discussed in detail using a reduced version of the
model in Appendix D.

In summary, our analysis of the Cell Collective models
using our newly introduced measures of quasicoherence and
fragility reveals that most of them are phenotypically ordered
for both update schemes considered. With these measures, we
uncover nontrivial perturbation recovery on long timescales
even in putatively chaotic perturbation responses captured by
the final Hamming distance, and we identify key mechanisms
behind phenotypic fragility and robustness.

IV. DISCUSSION

One of the conjectured hallmarks of complex biological
systems is that they sit somewhere between rigid order and
hypersensitive disorder. For example, a yeast cell must be
able to adjust its metabolic phenotype in response to external
cues such as oxygen availability, and to internal cues that
operate downstream of cellular mechanisms involved in pro-
cessing environmental signals. At the same time, the yeast
cell must not chaotically switch between metabolic pathways
in response to small fluctuations in external conditions or in
response to noise in its internal regulatory processes. From
an evolutionary perspective, some degree of phenotypic mu-
tability confers adaptability to a population; too much leads
to a lack of evolvability or even population collapse [49].
It has been argued that in living systems, there is often a
sharp boundary between these regimes, and the cusp of this
boundary is the ideal place to balance these competing needs
[1,4–6,10,18]. Indeed, in simple random models that resemble
biomolecular regulatory systems, this appears to be the case
[5,6,17,28]. The argument is further bolstered by the fact that
real-world models of specific within-cell functional modules
share some properties exhibited by these simple random mod-
els in the critical regime [15,19,50,51].

But these real-world models are not random; for instance,
they exhibit a higher degree of canalization and functional
redundancy [19,52,53], as well as a higher occurrence of
source nodes (as demonstrated here). Of course, it is well-
known that these models are nonrandom, and researchers are
typically careful to acknowledge the caveats this entails. For
example, Kauffman considers the question of random net-
work assembly in some depth from a biological perspective
[4]; Moreira and Amaral give a rigorous treatment of the
implications of nonergodicity and canalization in Boolean
ensembles [53]; Zañudo and colleagues give a careful treat-
ment of the underlying assumptions of randomness and their
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implications [28]; and we ourselves have discussed the po-
tential pitfalls of applying techniques designed for random
networks to nonrandom networks in previous work [15,19].
The Derrida coefficient [5,6], or its close cousin, the network
sensitivity [10], are superb tools in the setting in which they
were developed: synchronously updated random models. In
that setting, they offer a computationally simple way to deter-
mine the short-term and long-term response of the system to
perturbations. Even in nonrandom models, these tools remain
valid for exploring the short-term perturbation response, and
they can be extended to focus on steady-state robustness (e.g.,
by extending the influence measure of [54]), but more so-
phisticated measures are required for studying their long-term
dynamics in response to perturbations.

The traditional approach to directly quantifying the long-
term response to perturbations is to measure what we have
called the final Hamming distance. This measure provides
valuable information about the asymptotic separation of per-
turbed and unperturbed trajectories, but fails to account
for time-shifts. By considering whether perturbed and un-
perturbed trajectories differ in ways that are in principle
observable under typical experimental settings, the new mea-
sures we introduce provide a phenotypically grounded way to
quantify the ultimate impact of a perturbation. Our analysis
shows that the responses to internal perturbations that have
been previously associated with criticality are usually either
more transitory than initial perturbation growth may suggest
or become phenotypically irrelevant in the long term. In fact,
in the studied experimentally supported, nonrandom models
we uncover much greater robustness to perturbation, espe-
cially in their long-term effects, than the criticality hypothesis
implies.

Though such orderly behavior of functional modules (cell
processes) has been overlooked, indeed hidden by the typical
measures of criticality used, it is not altogether surprising. For
example, it is fundamental to Kauffman’s thesis that orderly
behavior can arise naturally from RBNs [3,4] and may play
a key role in the evolution of epigenesis. More recent work
[45] has analyzed microarray time-series data to suggest that
eukaryotic cells do not lie in the chaotic dynamical regime.
Particularly at the scale of individual functional modules, we
would expect a high degree of reliability in task execution
under most perturbations. For example, to effectively bal-
ance photosynthesis efficiency with water conservation, the
regulatory mechanism of stomatal guard cells in plant leaves
must reliably respond to stress hormones produced by other
modules in the plant’s regulatory network. Indeed, we observe
that in the Guard Cell Abscisic Acid Signaling model [55] and
the Stomatal Opening Model [56], the fixed-source fragility is
quite low (see Appendix G). In contrast, the traditionally used
Derrida coefficient suggests functional modules near or in the
chaotic regime. We interpret this to suggest that small errors
in signal transduction may lead to large initial deviations in
these systems, but that eventually these errors are corrected in
most cases. In the context of cell differentiation, Waddington
[57] argues for a kind of long-term developmental robustness
referred to as canalization; once committed to a cell fate, it
is expected that a stem cell is not easily diverted from its
specialization. We observe this in various development and
differentiation models, such as the Lymphoid and myeloid

cell specification and transdifferentiation model [58]. In this
model, the short-term perturbation response suggests critical-
ity (δs,p = 1.02), but a long-term view reveals that initially
divergent perturbed trajectories are canalized toward the fate
of their unperturbed counterparts in most cases (q = 0.9s,p,
ϕs,p = 0.16).

The new measures we introduced to characterize this ro-
bustness or phenotypic order allow us to distinguish process
delay from phenotype differentiation (h∞ versus ϕ), and to
separate smoothly varying distance in -omics space from
“all-or-nothing” phenotype differences (ϕ versus q). These
measures are computationally expensive to estimate, and until
now, their estimation on ensembles of large models (more
than a few dozen nodes) has been prohibitive. Here, we
have addressed this challenge by developing CUBEWALKERS,
a highly parallel GPU-based simulation toolkit. Our analysis
showcases its capacity for comprehensive calculation of long-
term perturbation dynamics in real-world Boolean networks
with hundreds of nodes or more. Future work will consider
these measures in the context of random Boolean networks.
Together with traditional measures, our new approaches offer
a more holistic way to study the dynamical response of living
systems to noise and perturbation.

Though our analysis suggests that the criticality of ex-
perimentally supported Boolean models of biomolecular
functional modules has been overstated, we emphasize that
this work is not the nail in the coffin of the “edge of chaos”
hypothesis. Rather, it suggests that living systems do not ex-
hibit critical behavior at the scale of functional modules. This
leaves ample room for critical behavior to emerge at larger
scales via the coupling of various functional modules. In-
deed, previous work by Balleza and colleagues [18] suggests
cell-scale critical perturbation response in two full-genome
regulatory networks with experimentally constrained topol-
ogy and random regulatory functions, though the authors do
not consider phase shifts in their analysis. We conjecture that
individual subsystems of a cell are highly ordered, but they
connect in networks that may give rise to more adaptive be-
havior. The large differences in perturbation response we have
observed depending on the treatment of source nodes (which
are exceedingly rare in traditional RBN models) support this
conjecture because it allows for larger perturbation responses
in networks of highly ordered functional modules coupled at
their source nodes. In critical RBNs, one may view the nodes
themselves as ordered subsystems. In real biological systems
of many variables, a multiscale, modular structure is expected
[59]. Thus, it is possible that order persists up to larger scales
in biology than it does in random models. More thorough
examination of criticality and perturbation response across
regulatory scales is needed to test our conjecture, which mo-
tivates the future development of sufficiently data-constrained
multiscale models.

Despite our finding that the Derrida coefficient is not a
good predictor of phenotypic robustness, we do not suggest
that it is without merit in models of specific functional mod-
ules. Instead, we merely caution that it must be carefully
interpreted as an indicator of immediate response to perturba-
tion only and should be studied in conjunction with long-term
response measures, such as those we have developed here.
We do suggest, however, that careful consideration be made
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to the biological interpretation of source node perturbation in
the context of the particular network being considered. Gen-
erally, we advise that perturbation of these nodes be handled
separately from perturbations to other nodes in the network.

We have also studied timing perturbations in these systems
by considering the effect of update scheme on various dy-
namical properties. Many update schemes exist for Boolean
networks, such as the most permissive Boolean network
framework of [60], random order update [30], or various up-
date schemes that make use of a continuous time parameter
such as is used in MaBoSS [61]. We focused on the syn-
chronous update and the asynchronous update, which are the
most frequently used and are the two opposite extremes of the
spectrum from deterministic timing coherence to completely
stochastic event timing. Models with long-term perturbation
growth under synchronous update also appear to be more
sensitive to timing perturbations (comparing the highlighted
models in Figs. 3 and 4). This is possibly related to the
fact that a single-node perturbation can be interpreted as an
asynchronous modification to the perturbed node. Previous
work [26] has shown that certain patterns of logical circuitry,
called conditionally stable motifs, can help explain robustness
to timing perturbation in some cases and may also confer
perturbation robustness. Such robustness is not guaranteed,
however. It is well established that the update scheme can
have a dramatic impact on the attractor dynamics of Boolean
networks (see, e.g., [25]). In the models considered here, the
average behavior of individual system components is typically
quite robust to update scheme, but in a few models there is a
dramatic difference in the biological interpretation of the in-
dividual trajectories that are possible in one update scheme or
the other. In the examples we have examined here where this
is the case, there are attractors that exist in the synchronous
update but which are absent in the asynchronous update. In
all such cases, the attractors were motif-avoidant, i.e., they
did not fall into any minimal trap space [25] (sometimes these
are called unfaithful attractors [62]). In these examples, delay
nodes played a prominent role in the behavior of the model
under synchronous update.

We generally found that models appear more ordered in
the asynchronous update, for example via the destruction of
synchronous attractors. Most dramatically, the median value
of h∞ for fixed source nodes is approximately 43% higher in
the synchronous update than in the asynchronous case. We
conjecture that noise in the update timing can suppress the
phase-dependent effects of node perturbation. Indeed, while
two phase-shifted oscillating trajectories can never realign in
the synchronous update, eventual realignment is likely un-
der the asynchronous update. Thus, the long-term response
to node perturbations becomes biased toward extinction in
the asynchronous update as measured by h∞ (see Fig. 16 in
Appendix F). In contrast, because q and ϕ inherently ac-
count for phase-shifts in perturbed trajectories, they are much
less sensitive to update scheme (see Figs. 17 and 18 in
Appendix F).

Though we have briefly examined the time dependence
of the Hamming separation ht , much about perturbation re-
sponse on intermediate timescales remains unexplored. In
some models, transient behaviors play a crucial role in the
biological interpretation of trajectories. For example, in [63], a

cell cycle model is presented in which the ultimate fate of any
asynchronously updated cell is death. Despite this, trajectories
exhibit behavior that is similar to experimentally observed
processes. Analyzing such a model using the framework we
have presented here would require modifying truncating the
time averaging to capture phenotypically relevant periods
prior to apoptosis.

We have illustrated the overall patterns observed in the
experimentally supported model ensemble by carefully ex-
amining the dynamics of specific examples and considering
dynamical behavior in the context of their intended biological
modeling goals. This has highlighted that the rich diversity
of biological function is not easily distilled to a few statisti-
cal properties. Some functional modules have dynamics that
almost trivially follow from the configuration of their inputs,
while others modules are highly multistable with long-term
dynamics that depend strongly on initial conditions and inter-
nal timings. In the search for unifying principles in biology,
it is important to acknowledge that biology is messy and that
functional context matters—especially in the study of specific
subsystem models. In other words, living systems are com-
plex, open systems. While there are important general con-
clusions we can draw, the differences between biomolecular
systems can be just as interesting as their common properties.
In that spirit, we show that functional modules in biomolec-
ular systems typically exhibit robust phenotypes, while
highlighting the diverse mechanisms through which this hid-
den order can arise. The observed order, as a phenomenon of
experimentally supported models, has been hitherto obscured
by the lack of dynamical measures that can quantify it and
the computational challenges of measuring the dynamics with
sufficient detail, an obstacle we overcame in the present work.

We hope that as computational biology continues its sec-
ond half-century, unprecedented computational power allows
deeper exploration of the interplay between order and chaos
in living systems, and helps uncover the unique biological
circumstances that enable it.

The CUBEWALKERS library is open source and available in
Ref. [64]. Data analysis scripts and raw data are available in
Ref. [65]. All other materials are provided in the Appendixes.
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APPENDIX A: BENCHMARKS

In this Appendix, we present benchmarks comparing the
CUBEWALKERS software to two competing software packages:
CANA and BOOLEANNET (see Figs. 7 and 8). Conducting unbi-
ased quantitative benchmarks that compare the performance
of CUBEWALKERS to that of other Boolean simulation tools
is complicated by the fact that CUBEWALKERS is primarily
GPU-based, while competing tools run entirely on the CPU.
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FIG. 7. Performance comparison of CUBEWALKERS, CANA, and BOOLEANNET on consumer hardware. 72 Cell Collective models were run
using each tool using synchronous update. Timings were generated on a PC with an AMD Ryzen 5 3600X CPU at 3.8 GHz and a 2560
CUDA-core 1605 MHz NVIDIA 2070S GPU. Default methods were run without additional parallelization. For the CUBEWALKERS tests, 2500
time steps and 2500 walkers (initial conditions) were used; for CANA, 500 time steps and 500 walkers were used; and for BOOLEANNET, 100 time
steps and 100 initial conditions were used. Thus, for each network, CANA computed 5× as many time steps for 5× as many initial conditions as
BOOLEANNET for an overall disadvantage of 25×. Similarly, CUBEWALKERS computed 5× as many time steps for 5× as many initial conditions
as CANA, for a 25× disadvantage relative to CANA and a 625× disadvantage relative to BOOLEANNET. The raw time to complete these tasks
is plotted in the left panel, where we observe that CUBEWALKERS consistently finishes its tasks an order of magnitude faster than the other
methods, despite the fact that it has been given significantly more computational work. In the right panel, the average computation time per
network node per time step per initial condition in these trials is plotted; this corresponds to the average (amortized) time to evaluate and apply
an update function to a node. Here, we see that these amortized evaluations occur on the order of nanoseconds for CUBEWALKERS, while they
occur on the order of microseconds for CANA and hundreds of microseconds for BOOLEANNET.

FIG. 8. Performance comparison of CUBEWALKERS, CANA, and BOOLEANNET on a high-performance computer. Cell Collective models
were run using each tool using synchronous update. Timings were generated using a workstation with two AMD EPYC 7542 CPUs (32 cores
and 64 threads each) at 2.9 GHz and two 10 752 CUDA-core NVIDIA A6000 GPUs with 48GB of GDDR6 memory (only one GPU was used
for the benchmarks). For the CUBEWALKERS and CANA tests, 2500 time steps and 2500 walkers (initial conditions) were used; for BOOLEANNET,
100 time steps and 100 initial conditions were used. For CANA and BOOLEANNET, initial conditions were simulated in 128 parallel threads. On
specialized hardware taking full advantage of parallelism, we see that the performance gap between CUBEWALKERS and the other methods is
narrowed compared to the performance gap on consumer hardware. Nevertheless, the gap remains considerable.
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TABLE I. Average (amortized) run time per simulation time
step for each method. The fastest method (CUBEWALKERS) for the
two hardware configurations is bolded. Note that CUBEWALKERS on
consumer hardware outperforms parallel adaptations of other tools
running on specialty high-performance computing hardware.

Software Hardware time (μs)

CUBEWALKERS consumer 0.11
CUBEWALKERS specialty 0.067
CANA (serial) consumer 40
CANA (parallel) specialty 1.1
BOOLEANNET (serial) consumer 1300
BOOLEANNET (parallel) specialty 37

Therefore, one must assess the relative quality of the CPU
and GPU used in benchmarking comparisons. Furthermore,
most CPU-based Boolean simulation tools do not execute
operations in parallel; however, user-side parallelization is
often possible. Despite these caveats, the performance advan-
tage of CUBEWALKERS is dramatic and convincing in practice.
We compared against the Python library CANA (which wraps
a C implementation via Cython) [31] and the Python li-
brary BOOLEANNET (which is written in pure Python) [30].
For synchronous simulations of models in the Cell Collec-
tive on consumer hardware, we demonstrate a speedup of
approximately 350 times on average compared to simula-
tion using CANA and a speedup of approximately 11 000
times on average compared to simulation using BOOLEAN-
NET. We also compared the performance of CUBEWALKERS to
the performance of parallelized simulations using CANA and
BOOLEANNET on a high-performance computing workstation.
In this case, CUBEWALKERS outperforms CANA by a factor of
16.6 and outperforms BOOLEANNET by a factor of just under
550. Furthermore, CUBEWALKERS has approximately 10 times
better performance on our consumer test hardware than is
achieved using parallel simulations with CANA on our spe-

cialty high-performance hardware. Average performance is
described in Table I. Note that the simulation results presented
herein required several days of computer time using CUBE-
WALKERS, so the approximately 16-times slowdown we expect
from the second-fastest software considered would result in
months of excess computation.

APPENDIX B: CONVERGENCE OF AVERAGE
NODE VALUES

The number of walkers were selected to ensure a stan-
dard deviation of less than 0.01 for each dynamical measure
computed. The minimum simulation count of W = 2500 was
used in the calculation of average node values. The conver-
gence of these values as a function of W is shown in Fig. 9.
For Derrida coefficient calculation, a value of approximately
W = 100 000 was used (W = �100 000/N� × N); for measur-
ing long-term perturbation spread, a value of W = 2500 was
used for each node targeted for perturbation (for a total of
2500 × N simulations each, resulting in W = 800 000 in the
largest model considered).

The question of how many time steps are required to
have a reasonable expectation of average node value conver-
gence is more complicated. There are two reasons for this:
(i) convergence time is highly model-dependent and (ii) as
the systems considered are generally not ergodic, the av-
erage node values may converge into oscillatory behavior.
Thus, there are two parameters that need to be considered:
a “burn-in” time Tb, and an averaging time window size
Tw, for a total simulation time of T = Tb + Tw. We fixed
Tb = 50N + 1000, so that at least 1000 updates are performed
and each node is updated more than 50 times on average in
the asynchronous update during the burn-in stage. We then
varied Tw and evaluated the convergence of the average node
values by comparing the values calculated in four subwin-
dows: Twi = [Tb + iTw/5, Tb + (i + 2)Tw/5] for i = 0, 1, 2, 3.
For each network in the Cell Collective, we computed the
absolute difference in average node values for each of the six

FIG. 9. Standard deviation in the node average values as the number of walkers increases for the Cell Collective models. The three panels
correspond to three different stages of the model simulation. The observed standard deviations agree well with the expectation based on
Bernoulli random variables (continuous line). We chose the number of walkers such that the standard deviation is less than 0.01 (dashed
vertical line).
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pairs of these four subwindows, and we identified the largest
absolute difference across all six comparisons for each node.
Convergence quality is assessed by computing the largest
of these values across all nodes. Based on this analysis, we
chose to use a value of Tw = 5N + 5000 for most models.
Three models took an unusually long number of time steps
to converge due to the complexity of their attractors; for
these we set the number of time steps manually: (Tb, Tw ) =
(5000, 25 000) for “Arabidopsis thaliana Cell Cycle” (N =
14), (Tb, Tw ) = (5000, 25 000) for “Guard Cell Abscisic Acid
Signaling” (N = 44), and (Tb, Tw ) = (50 000, 100 000) for
“Signal Transduction in Fibroblasts” (N = 139). The largest
absolute difference of average node values between any
two time subwindows Twi and Tw j across all nodes in all
networks was approximately 0.0004 in the synchronous up-
date and 0.0066 in the asynchronous update. Summing the
largest difference for each node gives a maximum of 0.0039
and 0.0881 for synchronous and asynchronous update, re-
spectively, across all networks in the Cell Collective. The
actual computed quantities aggregate many nodes and average
over a time window 2.5 times larger than any Twi; thus, in
practice, they have errors much lower than this very conserva-
tive upper bound. We are therefore confident that simulating
each network for T = 55N + 6000 time steps and averaging
node values over the last Tw = 5N + 5000 time steps is suffi-
cient for computing the average behaviors of nodes in almost
all models in the Cell Collective.

APPENDIX C: THE RELATIONSHIP BETWEEN TWO
DYNAMICAL MEASURES: FUZZY QUASICOHERENCE

AND FRAGILITY

The quasicoherence measure treats trajectories that con-
verge to the same quasiattractor as equivalent, even if they
converge to different attractors within that quasiattractor. We
introduce the fuzzy quasicoherence, a modification of the qua-
sicoherence such that it becomes sensitive to the similarity of
attractors but retains phase-insensitivity. This is achieved by
replacing the Q function with a “fuzzy” version that considers
the absolute difference between X (t ) and X (¬i)(t ). This gives
rise to the fuzzy quasicoherence, q̃:

q̃ =
〈

1

N

N−1∑
i=0

Q̃(〈X (t )〉)t→∞, 〈X (¬i)(t )〉t→∞

〉
X∈T

, (C1)

Q̃(X,Y ) = 1 − 1

N
‖X − Y ‖1. (C2)

Note the similarity with both q and h∞. Compared with q,
the formula for q̃ replaces the Q function with Q̃, which, like
Q, is 1 if the inputs are equal and 0 if the inputs are maximally
different in each entry, but which can interpolate between 0
and 1. The ability to interpolate between the extremes of Q
allows q̃ to account for whether quasiattractors are similar or
different, and it also allows q̃ to account for attractors within
the same quasiattractor that have different average node level
behaviors. Compared with h∞, q̃ can be viewed as a rescaling
with a slightly modified averaging scheme.

The fragility is related to the fuzzy quasicoherence by the
relationship ϕ = N (1 − q̃).

APPENDIX D: DETAILED DISCUSSION OF SELECTED
REPRESENTATIVE MODELS

1. Cell Cycle Transcription by Coupled CDK
and Network Oscillators

The Cell Cycle Transcription by Coupled CDK and Net-
work Oscillators ( ) model [36] incorporates the known
interactions among nine cell cycle transcription factors and
is one of several variants studied by Orlando et al. In
synchronous update, this model has a point attractor corre-
sponding to the G0 checkpoint and an oscillatory attractor that
reproduces the sequence of transcription during the phases
of the cell cycle. We find that the oscillatory attractor disap-
pears under asynchronous update. This result indicates that the
model can only reproduce the biological sequence of events if
the node states change in synchrony.

To better understand the mechanisms that lead to this
timing perturbation sensitivity, we simplified the model by
merging closely related nodes and verified that the simplified
model reproduced the correct transcription sequence under
synchronous update. A key feature of the resulting network
is that it consists of a positive feedback loop that intersects
a shorter negative feedback loop. In general, this property
ensures that the system is not monostable under synchronous
update [67], i.e., an attractor other than the G0 fixed point
exists. This extra attractor relies on synchrony and is therefore
not robust to timing perturbation. The simplest example with
these features is given in Eq. (D1); adding a delay node to
the self-inhibition of X [Eq. (D2)] equalizes the feedback
loop lengths and results in monostability under synchronous
update, consistent with the results of [67]. In asynchronous
update, both systems are monostable. See panel A of Fig. 10
for further details.

X � = ¬X ∧ Z, Z� = X, (D1)

X � = ¬Y ∧ Z, Y � = X, Z� = X. (D2)

2. Aurora Kinase A in Neuroblastoma

The Aurora Kinase A in Neuroblastoma ( ) model devel-
oped by Dahlhaus et al. [37] explores the role of the Aurora
Kinase A protein in the cell cycle of neuroblastoma cancer
cells. Dahlhaus et al. used synchronous update and reported
three families of attractors: a point attractor corresponding
to the G0 checkpoint, a three-state cycle describing cells
proceeding faithfully through mitosis, and a three-state cycle
corresponding to cells with defective mitosis, respectively.
Aurora Kinase A is off in the G0 point attractor, expressed
and active in the faithful mitosis attractor, and oscillates in the
defective mitosis attractor. Defective mitosis leads to mitotic
catastrophe and cell death via mechanisms outside the model,
and is desirable in the context of neuroblastoma. Dahlhaus
et al. find that constitutive activation of Greatwall/MASTL
stabilizes Aurora Kinase A, increasing the likelihood of faith-
ful mitosis of cancer cells and decreasing the likelihood of
mitotic catastrophe. Analysis of gene expression profiles of
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FIG. 10. Example networks and their state transition graphs (STGs) that illustrate update dependence. Panel A illustrates delay-dependency
in the example of Eqs. (D1) and (D2), which are inspired by the Cell Cycle Transcription by Coupled CDK and Network Oscillators
model [36]. Panel B demonstrates how much of the STG in the Metabolic Interactions in the Gut Microbiome model [40] is robust to
changes in update scheme. Panels C–E illustrate how the asynchronous update can mix the synchronous attractor basins in a core regulatory
circuit in the Colitis-associated colon cancer model [41] (panel C), the full synchronous STG of the Cortical Area Development model
[42] (panel D), and a reduced version of the Apoptosis Network model [43] (panel E). In each interaction network, each node symbol
contains the update function of the node. Blue edges ending in filled circles indicate positive regulation, and red edges ending in open
circles denote negative regulation. In the STGs, attractor states are indicated by thick borders. The basin of attraction of each attractor is
highlighted by the same color as the attractor. In asynchronous update, states can reach more than one attractor; such states are shaded
using a gradient. In the lower part of panel A, states that differ only in the value of the delay node Y are grouped together in shaded
boxes.

neuroblastoma patients confirmed that constitutive activation
of Greatwall/MASTL is correlated with poor prognosis.

In asynchronous update, only attractors corresponding to
the G0 checkpoint and faithful mitosis exist. This also leads
to population-level differences in this model: Aurora Kinase
A is active significantly more often under synchronous update
than under asynchronous update, yielding a higher average
expression level of Aurora Kinase A in a cell population. This
model can be reduced to the system

AK� = PLK1 ∧ AKP,

AKP� = ¬PP2A,

MP� = ¬MP ∧ (AK ∨ PLK1),

PLK1� = AK,

PP2A� = ¬AK ∧ ¬MP. (D3)

Here, AKP and AK represent the presence and activity
of the Aurora kinase A, respectively; PP2A and PLK1 are
important cell cycle proteins, and MP represents the physical
processes of mitosis. As in the full model, this reduced system
has synchronous-update attractors corresponding to the G0
checkpoint and faithful and defective mitosis; the last of these

vanishes in asynchronous update, leading to differences in the
average activity of Aurora kinase A. Notably, the synchronous
behavior is sensitive to the existence of the intermediary node
AKP: if AKP and AK are merged, the synchronous update
yields similar results to the asynchronous update, which is in-
sensitive to this merger. This shows that the defective mitosis
attractor is dependent on a delay between PP2A activation and
its effect on AK. Because delays are intrinsically stochastic in
the asynchronous update, this delay dependency explains why
defective mitosis cannot be sustained under asynchronous
update.

We note that the main conclusion of the original article,
that stabilization of the Aurora kinase increases mitosis of
cancer cells, does not depend on the existence of the defective
mitosis attractor.

3. Regulation of the L-arabinose operon in Escherichia coli

In contrast to the previous examples in this section, the
Regulation of the L-arabinose operon in Escherichia coli ( )
model [38] has spurious synchronous attractors that disappear
under asynchronous update and do not have biological mean-
ing. This model describes the regulation of the genes involved
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in arabinose metabolism in E. coli in different environmental
settings. Specifically, the model considers 12 possible com-
binations of three levels of external arabinose, availability of
unbound AraC protein, and the presence/absence of external
glucose. In the input configuration corresponding to a medium
level of external arabinose, available unbound AraC protein,
and no external glucose, there are two point attractors, and
four additional cyclic attractors under synchronous update.
As in the example of Eq. (1), these additional synchronous
attractors arise from a positive feedback loop (here formed by
four nodes), and the symmetry of the positive feedback loop
causes the average node values to be unaffected by the addi-
tional attractors. The original article describes these additional
attractors as artifacts of the synchronous update, in contrast to
the two biologically justified point attractors shared by both
updates.

The timing dependence of the model’s attractors is only
observed in this specific input configuration. The model is
monostable (has a single, update-independent point attractor)
in the remaining 11 input configurations.

4. Metabolic Interactions in the Gut Microbiome

The Metabolic Interaction in the Gut Microbiome ( )
model [40] describes inferred interactions among 10 bacte-
rial genera of the healthy gut microbiome, the pathogenic
bacterium Clostridium difficile, and clindamycin antibiotic
treatment. When clindamycin is present, the system reduces
such that the attractor is determined by a complete subnet-
work of three cooperative and self-sustaining bacterial gen-
era (Lachnospiraceae, Lachnospiraceae_other, Other). As a
consequence, the basin of the attractor in which all three
genera are present, representing more than 85% of the state
space, is identical in the two update schemes. The remaining
state space is split between two very similar attractors in a
manner that only weakly depends on update scheme. These
effects can be seen by comparing the state transition graphs of
this model under synchronous and asynchronous update (see
panel B of Fig. 10). In the absence of clindamycin, only two
nodes are free to vary and their average values depend mildly
on update scheme.

5. Colitis-associated colon cancer

The Colitis-associated colon cancer ( ) model [41] has
an unusually high difference in average node values de-
pending on which update scheme is used (see Fig. 3).
This model integrates the signaling pathways that underlie
inflammation-associated tumorigenesis. The original analysis
used asynchronous update and reported three oscillating at-
tractors and two point attractors, each of the latter having
a very small basin of attraction. Notably, the authors also
emphasize the average node values in their interpretation of
the model, meaning that the large difference in average node
values under the two update schemes may be especially signif-
icant. The authors also identify a core regulatory subnetwork
that determines the dynamics of the system under protumor
conditions. Within this subnetwork, we identify that the ma-
jority of the difference in average node values stems from the

relationships between three nodes: CTL, IFNG, and IL10,

CT L� = IFNG ∧ ¬IL10,

IFNG� = CT L,

IL10� = ¬IFNG. (D4)

This three-node network is analyzed in panel C of Fig. 10. It
has two point attractors. Under synchronous update, one of
these attractors is not reachable from any other state. Under
asynchronous update, however, most states can reach either
attractor. Because these two attractors have all three nodes in
opposite states, this gives rise to a large RMS difference in
average node values, which propagates through much of the
network.

6. Cortical Area Development

Cortical Area Development ( ) model [42] aims to explain
how interactions among a morphogen and four transcription
factors lead to their characteristic expression pattern during
mouse cerebral cortex development. The two poles of the cor-
tex are represented by different initial conditions. The model
uploaded to the Cell Collective was featured in [42] as a
previously hypothesized model that does not recapitulate the
expected biological result. We analyzed the model on the Cell
Collective as well as one of the successful models reported in
[42]. Both are bistable, with one attractor being much more
likely than the other under synchronous update; under asyn-
chronous update, the two attractors are more equally balanced.
The state transition graph of the Cell Collective version is
shown in panel D of Fig. 10. The state transition graph of
the more successful model exhibits similar behavior, but the
sizes of the two attractor basins are interchanged. The model
in the Cell Collective is not successful under either update; the
other model requires asynchronous update for success. Thus,
the biological interpretation of the improved model is strongly
dependent on update scheme.

7. Apoptosis Network

The Apoptosis Network ( ) model [43] of Mai and Liu
describes cancer cells’ decision between apoptosis and sur-
vival. Mai and Liu used synchronous update and reported
that both phenotypes are possible under each combination of
growth factor and tumor necrosis source nodes. We confirm
this and identify a three-node subnetwork that determines the
phenotype,

Cas3� = Cas6 ∧ ¬IAP,

Cas6� = Cas3 ∧ ¬IAP,

IAP� = ¬Cas3 ∨ ¬Cas6. (D5)

Apoptosis occurs when Cas3 = Cas6 = 1 and IAP = 0,
while Cas3 = Cas6 = 0 and IAP = 1 lead to survival. Our
analysis with CUBEWALKERS found that the outcome of both
the full model and this subnetwork strongly depends on up-
date scheme: apoptosis is twice as likely under asynchronous
update (see panel E of Fig. 10). In the full model, changing
the update scheme changes whether survival or apoptosis is
more likely. Despite this dramatic difference, enough nodes
in the network take the same value in both attractors that the
network’s average node values overall are moderately robust
to update scheme. Indeed, the model has an RMS difference
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FIG. 11. Fragility of a four-node reduced version of the Human Gonadal Sex Determination model of [48]. Panel A depicts the interaction
network. Each node symbol contains the update function of the node. Blue edges ending in filled circles indicate positive regulation, and red
edges ending in open circles denote negative regulation. Panel B shows the state transition graph under the synchronous update. Attractor
states are indicated by thick borders. The basin of attraction of each attractor is highlighted by the same color as the attractor. State transitions
are shown with black arrows, and orange double-sided arrows indicate state pairs that are related by single-node perturbations. These are the
transitions that can arise from single-node perturbations and that lead to different long-term behavior than is observed without perturbation.
The thickness of each orange edge indicates the Hamming distance between the corresponding attractors. Panel C shows how to calculate the
fragility of this reduced model exactly using the information in panel B.

in average node values that, though higher than the median, is
quite low in absolute terms (near 0.1; see Fig. 3).

Thus we have observed that the attractors and average node
values in this model are robust to timing perturbation, but
the biological interpretation of the dynamics is only partly
conserved across update schemes.

8. Human Gonadal Sex Determination

The Human Gonadal Sex Determination ( ) model [48]
describes the gene regulatory network that controls the differ-
entiation of the gonadal primordium towards testes or ovaries
in the early stages of embryonic development. The original
article reported three point attractors; in addition to the two
expected ones, each with a basin of almost 50% under syn-
chronous update, there is a third attractor, corresponding to
disgenetic testes, whose basin is less than 1%. We find that
under asynchronous update, the basin of the two expected
attractors decreases and the basin of the third attractor in-
creases. We note that this model has high fragility (ϕa, f ≈ 1.1,
and ϕs, f ≈ 1.5 for synchronous and asynchronous update; the
model has no source nodes). Fragile models such as this are
characterized by multiple basins of attraction with attractors
that differ in many nodes. When a node of the system is
perturbed, the system has a tendency to enter a different basin
of attraction, causing its converged average node values to be
substantially different than those of the unperturbed trajectory.

A four-node reduced version of the Human Gonadal Sex
Determination model ( ) illustrates this property,

CT NNB1� = W NT 4 ∧ ¬SRY,

SOX9� = ¬W NT 4 ∧ SOX9 ∧ ¬CT NNB1,

SRY � = ¬CT NNB1 ∧ (SOX9 ∨ SRY ),

W NT 4� = ¬SOX9 ∧ ¬SRY. (D6)

This reduced model has three attractors, one of which has
a basin of attraction much larger than the others (11 states
versus 2 and 3 states). The two attractors with smaller basins
of attraction are highly fragile; a perturbation to a single node

has a 75% chance of altering the attractor basin in four out of
five of these states, and a 50% chance of doing so in the fifth
state. Though these attractors have small basins, collectively
they make up just under a third of the state space. The result-
ing fragility in this reduced model is 1.125 under synchronous
update. We conjecture that the abundance of overlapping mu-
tual inhibition loops in the reduced model contributes to the
fragility of the attractor basins. See Fig. 11 for a detailed
visualization of the fragility of this reduced system.

APPENDIX E: SOURCE NODES AND CONSTANT NODES
ARE RARE IN RBNs

Source nodes are rare in most types of RBN ensembles.
To illustrate this, consider an RBN ensemble with a specified
in-degree distribution, P(k), and assume that a node with a
given in-degree has its regulators chosen uniformly at random.
We also assume that regulatory functions are chosen as in
the N-K model with bias p. In such a random model, the
probability that a node with in-degree k self-regulates is k/N ,
for a network of N nodes. The probability that the source up-
date function [e.g., fi(x) = xi] is chosen is p2(k−1)

(1 − p)2(k−1)

because for the half of the 2k possible inputs in which xi = 1,
an output of 1 must be chosen, while for the other half, 0
must be chosen. Therefore, the probability that a node with
k regulators and bias p is a source node is

Psource(k, p) = kσ 2k

N
, (E1)

where we have used the bias variance, σ 2 = p(1 − p), to
simplify the expression.

Thus, the probability that a specific node is a source node
is

∑∞
k=0 Psource(k, p)P(k). By assuming that node properties

are generated independently, the expected number of source
nodes can be calculated by multiplying by N :

〈nsource〉 =
∞∑

k=0

P(k)kσ 2k
, (E2)
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Notably, this expression is independent of N . This is be-
cause there are two competing effects as the network size
grows that exactly cancel out on average: (i) with more nodes,
there are more potential source nodes, and (ii) with more
nodes, there are more potential regulators for each node, mak-
ing it less likely that a node selects itself as a regulator.

We now put an upper bound on 〈nsource〉. The largest σ

can be is 1/2, which is obtained for p = 1/2. This allows us
to write 〈nsource〉 �

∑∞
k=0 P(k)k2−2k

. The expression k2−2k
is

maximized for k = 1. Substituting this provides a numerical
upper bound on the expected number of source nodes

〈nsource〉 � 1/4. (E3)

Because the expected number of source nodes is bounded
above by 1/4, and because the number of source nodes in any
finite network must be a non-negative integer, we expect that
in any ensemble of finite random networks (generated accord-
ing to the assumptions above), more than 75% completely
lack source nodes. This stands in stark contrast to the Cell
Collective; only nine of these 72 models are source-free, and
the average number of source nodes in these networks is 4.94
(median 3, maximum 33) (see Fig. 12).

A similar calculation can be performed to determine the
expected number of constant nodes in these models. The prob-
ability that a node with k regulators has an update function
equal to 1 is p2k

(because an output must be chosen for all
2k input configurations). Similarly, the probability that this
node has the update function 0 is (1 − p)2k

. Thus, the expected
number of constant nodes is

〈nconstant〉 = N
∞∑

k=0

P(k)(p2k + (1 − p)2k
). (E4)

For p = 1 or 0, all nodes are constant; for p = 0.5, the
fraction of constant nodes is minimized and can be made ar-
bitrarily small by weighting the in-degree distribution toward
higher k.

FIG. 12. The distribution of the Cell Collective models based on
the number of source nodes (top) and the ratio of the number of
source nodes to the total number of nodes (bottom).
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APPENDIX F: SUPPLEMENTARY FIGURES

Figures 13–19 present additional information regarding the distributions of measures discussed in the main text.

FIG. 13. Comparison of key measures for the 18 models in the Cell Collective that were altered to attain a better agreement with the
originally published models.
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FIG. 14. Systematic evaluation of the dependence of the Derrida coefficient δ on the update scheme and on source node perturbations. The
ensemble of Cell Collective models shows a general agreement between the Derrida coefficients obtained for synchronous and asynchronous
update (top panels). When source nodes not candidates for perturbation, the Derrida coefficient dramatically decreases (bottom panels). For
example, note that three cancer drug models (plus signs) lie far from the diagonal in the lower two panels, indicating that these models are
highly affected by perturbations to source nodes. This is to be expected, as the source nodes in these models represent known cancer drugs that
were selected because they have a tremendous impact on the behavior of cancer cells.
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FIG. 15. Relationships of the Derrida coefficient δ with the final Hamming distance h∞ and the fragility ϕ.
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FIG. 16. Comparison of different ways to compute h∞. The ensemble of Cell Collective models shows an overall agreement between the
final Hamming distances obtained for synchronous and asynchronous update (top panels). Exceptions include models that exhibit significant
phase shifts under synchronous update. When source nodes are not candidates for perturbation, the final Hamming distance dramatically
decreases (bottom panels).
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FIG. 17. Comparison of different ways to compute q. There is a general agreement between the quasicoherences obtained for synchronous
and asynchronous update (top panels). Making the source nodes not candidates for perturbation dramatically decreases the fragility (bottom
panels).
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FIG. 18. Comparison of different ways to compute ϕ. There is a general agreement between the fragilities obtained for synchronous and
asynchronous update (top panels). Making the source nodes not candidates for perturbation dramatically decreases the fragility (bottom panels).
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FIG. 19. Comparison of the final Hamming distance h∞ and the fragility ϕ. The final Hamming distance is always larger than or equal to
the fragility in both update schemes. The difference is much more prominent in the synchronous update in which any phase shift is permanent,
compared to the asynchronous update in which the stochasticity can disperse it.

APPENDIX G: SUPPLEMENTARY TABLES

1. Modifications to Cell Collective models

Tables II–IV present information regarding modifications we have made to models in the Cell Collective.

TABLE II. Modifications to account for source nodes that express a cellular context.

Model name PMID Modification

Bortezomib Responses in U266 Human
Myeloma Cells

26163548 Constant source nodes: SHP1 = 0 and TNFA = TNFAR = X = 1.

CD4 T cell signaling 25538703 Constant source node: CAV1_ACTIVATOR = 0.
EGFR & ErbB Signaling 19662154 Constant source nodes: mkp = pp2a = pp2b = 0 and erbb1 = erbb2 =

erbb3 = erbb4 = pten = ship2 = csrc = pdk1 = esp8r = mtorr = pi3kr =
sos1r = 1.

Glucose Repression Signaling 2009 19144179 Constant source nodes: GAL11 = GAL2 = GAL80 = GLC7 = GRR1 =
MALT = MIG1 = REG1 = RGT1 = RGT2 = SNF1 = SNF3 = SNF4 =
STD1 = YCK1_2 = 1.

Guard Cell Abscisic Acid Signaling 16968132 Constant source nodes: ABH1 = ERA1 = GCR1 = 1.
HGF Signaling in Keratinocytes 22962472 Constant source nodes: AKAP12 = PTEN = DUSP1 = 0 and PAI-1 = 1.
HIV-1 interactions with T Cell Signalling

Pathway
25431332 Constant source nodes: RASA = 0 and antigen = BCAR1 = CD45 =

Chemokine = CRKL = DLGH1 = GADD45 = GRKL = ICOS =
IKBNFKB = PDCD1_PD1 = 1.

IL-1 Signaling 21968890 Constant source nodes: irakm = pten = sil1r12 = smyd88 = socs1 = socs3
= 0 and abin2 = ck2 = ikka = ikkb = mtorc2 = pdk1 = 1.

IL-6 Signalling 21968890 Constant source nodes: cyt_ptpe = gp130m = nfkb = phlpp = pias1 =
pias3 = pten = ros = ship = sirp1a = slim = 0 and gab1_kin = mtor =
pdk1 = 1.

T Cell Receptor Signaling 17722974 Constant source node: lckr_input=1.
T-LGL Survival Network 2008 18852469 Constant source nodes: TAX = CD45 = 0 Misspelling fixed: IFN should be

IFNG in CREB rule.
T-LGL Survival Network 2011 22102804 Constant nodes: TAX = CD45 = 0.
BT474 Breast Cell Line Long-term 24970389 The isolated source node BAX is removed.

ErbB Network
HCC1954 Breast Cell Line Long-term ErbB

Network
24970389 The isolated source nodes BAX, Nfkb are removed.

Septation Initiation Network 26244885 Constant source nodes: ppc89 = 1 and CK1 = etd1 = ras1 = 0.
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TABLE III. Modifications to avoid invalid combinations of source node values.

Model Name PMID Modification

Stomatal Opening Model 27542373 As CO2_high=1 & CO2=0 is not a valid combination, we replaced CO2 by (CO2 ||
CO2_high) so that CO2_high=1 & CO2=0 is considered as CO2_high=1 &
CO2=1.

Septation Initiation Network 26244885 As cdk_0, cdk_L, cdk_H represent levels of cdk and only one should be active, we
removed the source node cdk_0 and replaced it in the rules by (!cdk_L && !cdk_H),
we replaced cdk_L by (cdk_L && !cdk_H) so that combinations such as cdk_L=1
and cdk_H=1 are considered as cdk_H=1. We made cdc7 regulate sid2-mob1 as in
the original paper.

TABLE IV. Modifications to remove aggregate source nodes and apply the original paper’s cellular context.

Model Name PMID Modification

Signaling in Macrophage
Activation

18433497 Constant nodes: BAG4 = GAS2 = DNA = IRF4 = IFNGR2 = BCL3 =
ProCASP10 = TICAM1 = NOS2Agene = MAP3K7IP2 = IKBKE = TRADD
= CFLAR = JAK1 = EP300 = PTPN2 = BID = FAS = TLR9 = TLR7 =
DAXX = SOCS1 = TLR5 = ProCASP8 = IFNGR1 = TRAF6 = CD40 =
DFFA = TNFRSF17 = TBK1 = ProCASP4 = TIRAP = APAF1 = Proteasome
= PRKRA = IL1R1 = MAP3K7IP1 = TLR2 = PRKCZ = CHUK = TLR3 =
FAF1 = TICAM2 = PTP = IKBKB = FADD = MYD88 = PARP = TOLLIP =
IRAK2 = TNFRSF10B = TNFRSF1B = LMNA = HSPA1A = ProCASP1 =
IRF9 = TRAF5 = NFKB2p100 = SPI1 = SOCS3 = MAP3K7 = TYK2 =
TLR6 = TRAF3 = TRAF2cytoplasm = RIPK3 = ProCASP2 = TNFRSF10A =
TNFRSF1A = IRAK4 = RPS6KA5 = Ub = IKBKG = PRKCD = IRAK1 =
BIRC2 = IFNAR2 = CREBBP = IFNAR1 = JAK2 = ATF2 = RELB = RIPK1
= 1. We removed the merged node External_Activator implemented in the Cell
Collective version.

T Cell Receptor Signaling 17722974 We removed the merged source nodes unknown_input, unknown_input2, and
unknown_input3 implemented in the Cell Collective version and fixed their
targets in the states indicated in the original paper: akap79 = calpr1 = cdc42 =
gap = pten = ship1 = 0 and bcl10 = card11 = ccblr = cd45 = gadd45 = lckr =
malt1 = rac1r = 1.

Yeast Apoptosis 23233838 Constants nodes: DRE2_TAH18 = AIF1_MT = EMC4 = NDI1 = MCD1_MT =
STM1_CYT = CDC48 = MMI1 = FVY10 = POR1_2 = SRO7 = SOD2 =
SNO1 = SVF1 = MDV1= FIS1 = 1. We removed the merged node HK.

2. Model characteristics

Tables V–XIV present summary information for the models analyzed in this study.

TABLE V. Cancer models.

Model Name PMID Nodes Source Nodes Mean Regulators δs,p ϕa, f

Aurora Kinase A in Neuroblastoma ( ) 26616283 23 4 2.0435 1.0504 0.9015
Colitis-associated colon cancer ( ) 26446703 70 1 2.2000 0.9867 1.5197
IGVH mutations in chronic lymphocytic leukemia 26088082 91 25 1.3736 0.9615 0.0014
Mammalian Cell Cycle 16873462 20 1 2.5500 0.8457 0.1941
MAPK Cancer Cell Fate Network 24250280 53 4 2.0377 1.0051 0.0105
Pro-inflammatory Tumor Microenvironment in 27594840 26 2 3.1154 0.9644 0.0034

Acute Lymphoblastic Leukemia
T-LGL Survival Network 2008 18852469 60 4 3.2833 0.9202 0.1812
T-LGL Survival Network 2011 Reduced Network 22102804 18 0 2.3889 1.0125 0.3957
T-LGL Survival Network 2011 22102804 60 4 3.3167 0.8886 0.1285
Tumour Cell Invasion and Migration ( ) 26528548 32 2 4.9375 0.7222 0.6563
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TABLE VI. Cancer Drug Response models.

Model Name PMID Nodes Source Nodes Mean Regulators δs,p ϕa, f

Bortezomib Responses in U266 Human
Myeloma Cells

26163548 67 1 1.8955 0.9147 0.2231

BT474 Breast Cell Line Long-term
ErbB Network

24970389 24 5 3.0417 0.9439 0.3230

BT474 Breast Cell Line Short-term
ErbB Network

24970389 16 5 3.1875 0.7614 0.1873

HCC1954 Breast Cell Line Long-term
ErbB Network

24970389 23 4 3.1304 0.9643 0.4022

HCC1954 Breast Cell Line Short-term
ErbB Network

24970389 16 5 3.1875 0.7841 0.1934

SKBR3 Breast Cell Line Long-term
ErbB Network

24970389 25 4 3.4000 0.9458 0.2841

SKBR3 Breast Cell Line Short-term
ErbB Network

24970389 16 5 2.8750 0.7908 0.3197

Treatment of Castration-Resistant
Prostate Cancer

28361666 42 14 1.5476 0.9964 0.0000

TABLE VII. Cell Cycle models.

Model Name PMID Nodes Source Nodes Mean Regulators δs,p ϕa, f

Arabidopsis thaliana Cell Cycle ( ) 26340681 14 0 4.7143 1.2722 0.0000
Budding Yeast Cell Cycle 2009 23049686 18 0 3.2222 1.1099 0.0003
Budding Yeast Cell Cycle 19185585 20 4 2.3000 1.0129 0.1266
Cell Cycle Transcription by Coupled CDK

and Network Oscillators ( )
18463633 9 0 2.1111 0.9414 0.0000

FA BRCA pathway 22267503 28 0 4.3571 1.0143 0.0036
Fanconi anemia and checkpoint recovery 26385365 15 0 4.2667 0.9783 0.0045
Mammalian Cell Cycle 2006 19118495 10 1 3.5000 1.0135 0.0000
Septation Initiation Network 26244885 30 2 1.6333 0.9014 0.2923

TABLE VIII. Development and Differentiation models.

Model Name PMID Nodes Source Nodes Mean Regulators δs,p ϕa, f

B cell differentiation 26751566 22 5 2.0000 1.0003 0.2118
Cardiac development 23056457 15 2 2.6000 0.9866 0.1196
CD4+ T Cell Differentiation and Plasticity 30116195 18 6 4.6667 0.7214 0.4048
CD4+ T cell Differentiation 26090929 38 9 2.6316 0.9837 0.2866
Cortical Area Development ( ) 20862356 5 0 2.8000 0.8011 0.9384
Differentiation of T lymphocytes 23743337 50 9 2.1200 0.9806 0.4199
Human Gonadal Sex Determination ( ) 26573569 19 0 3.9474 1.0490 1.1484
Lymphoid and myeloid cell specification

and transdifferentiation
28584084 33 2 2.8788 1.0266 0.7574

Lymphopoiesis Regulatory Network 26408858 81 14 2.1235 0.9500 0.2332
PC12 Cell Differentiation 27148350 62 1 1.7581 0.9323 0.0162
T cell differentiation 6542429 23 4 1.6522 1.0314 0.6419
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TABLE IX. Infection and Microbiome models.

Model Name PMID Nodes Source Nodes Mean Regulators δs,p ϕa, f

B. bronchiseptica & T. retortaeformis coinfection 2253585 53 1 2.5660 1.0004 0.5127
Bordetella bronchiseptica 2253585 33 0 2.3939 1.0137 0.0453
Influenza A Virus Replication Cycle 23081726 131 11 2.3282 0.9007 0.0313
Metabolic Interactions in the Gut Microbiome ( ) 26102287 12 4 2.5833 1.0017 0.2718
Trichostrongylus retortaeformis 2253585 26 1 2.2692 1.0117 0.5418

TABLE X. Metabolism models.

Model Name PMID Nodes Source Nodes Mean Regulators δs,p ϕa, f

Cholesterol Regulatory Pathway 19025648 34 2 1.2647 0.9927 0.0000
Glucose Repression Signaling 2009 19144179 73 3 1.3699 0.7966 0.0193
Iron acquisition & oxidative stress response in

A. fumigatus
25908096 22 2 1.8182 1.0373 0.0001

Lac Operon 21563979 13 3 1.9231 0.9974 0.0952
Regulation of the L-arabinose operon of

Escherichia coli ( )
28639170 13 4 1.6154 1.0379 0.0492

TOL Regulatory Network 23171249 24 10 2.4167 0.9347 0.0000

TABLE XI. Models of Drosophila melanogaster signaling pathways.

Model Name PMID Nodes Source Nodes Mean Regulators δs,p ϕa, f

FGF pathway of Drosophila Signalling Pathways 23868318 23 9 1.3478 0.9785 0.0000
HH Pathway of Drosophila Signaling Pathways 23868318 24 13 1.8750 0.9284 0.0000
Processing of Spz Network from the Drosophila

Signaling Pathway
23868318 24 6 1.4167 0.9460 0.0000

Toll Pathway of Drosophila Signaling Pathway 23868318 11 2 1.1818 1.0003 0.0000
VEGF Pathway of Drosophila Signaling Pathway 23868318 18 8 1.4444 0.9604 0.0000
Wg Pathway of Drosophila Signalling Pathways 23868318 26 14 1.6538 0.9803 0.0019

TABLE XII. Models of signal transduction relative to immune system cells.

Model Name PMID Nodes Source Nodes Mean Regulators δs,p ϕa, f

CD4 T cell signaling 25538703 188 33 2.0160 0.9713 0.1535
HIV-1 interactions with T Cell Signaling Pathway 25431332 138 2 2.2029 0.8771 0.1888
IL-1 Signaling 21968890 118 2 1.8644 0.8375 0.0000
IL-6 Signalling 21968890 86 1 1.7442 0.7495 0.0000
Signaling in Macrophage Activation 18433497 320 18 1.4125 0.7113 0.0066
T Cell Receptor Signaling 17722974 98 3 1.5102 0.8200 0.0015
T-Cell Signaling 2006 16464248 40 3 1.3750 0.9857 0.0071

TABLE XIII. Models of signal transduction in stress, damage, and homeostasis.

Model Name PMID Nodes Source Nodes Mean Regulators δs,p ϕa, f

Apoptosis Network ( ) 19422837 41 2 1.8293 1.0118 0.3297
Death Receptor Signaling 20221256 28 3 1.7143 1.0350 0.8377
Guard Cell Abscisic Acid Signaling 16968132 44 1 1.7955 0.9378 0.1277
Oxidative Stress Pathway 23134720 19 1 1.7368 0.9839 0.0001
Senescence Associated Secretory Phenotype 29206223 51 2 1.9216 0.9844 0.2714
Yeast Apoptosis 23233838 72 12 1.5278 0.7210 0.0024
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TABLE XIV. Other models of signal transduction.

Model Name PMID Nodes Source Nodes Mean Regulators δs,p ϕa, f

EGFR & ErbB Signaling 19662154 104 13 2.2981 0.8128 0.0074
HGF Signaling in Keratinocytes 22962472 68 2 1.5441 0.9361 0.2023
Neurotransmitter Signaling Pathway 17010384 16 2 1.3750 0.9810 0.0234
Signal Transduction in Fibroblasts ( ) 18250321 139 9 3.9640 1.1178 0.3799
Stomatal Opening Model 27542373 49 5 3.5510 1.1772 0.0477
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