Optical diagnostics of laser-produced plasmas

S. S. Harilal, M. C. Phillips, D. H. Froula, K. K. Anoop, R. C. Issac, and F. N. Beg
Rev. Mod. Phys. 94, 035002 – Published 15 August 2022; Erratum Rev. Mod. Phys. 96, 019901 (2024)

Abstract

Laser-produced plasmas (LPPs) engulf exotic and complex conditions ranging in temperature, density, pressure, magnetic and electric fields, charge states, charged particle kinetics, and gas-phase reactions based on the irradiation conditions, target geometries, and background cover gas. The application potential of the LPP is so diverse that it generates considerable interest for both basic and applied research areas. The fundamental research on LPPs can be traced back to the early 1960s, immediately after the invention of the laser. In the 1970s, the laser was identified as a tool to pursue inertial confinement fusion, and since then several other technologies have emerged out of LPPs. These applications prompted the development and adaptation of innovative diagnostic tools for understanding the fundamental nature and spatiotemporal properties of these complex systems. Although most of the traditional characterization techniques developed for other plasma sources can be used to characterize the LPPs, care must be taken to interpret the results because of their small size, transient nature, and inhomogeneities. The existence of the large spatiotemporal density and temperature gradients often necessitates nonuniform weighted averaging over distance and time. Among the various plasma characterization tools, optical-based diagnostic tools play a key role in the accurate measurements of LPP parameters. The optical toolbox contains optical spectroscopy (emission, absorption, and fluorescence), as well as passive and active imaging and optical probing methods (shadowgraphy, Schlieren imaging, interferometry, Thomson scattering, deflectometry, and velocimetry). Each technique is useful for measuring a specific property, and its use is limited to a certain time span during the LPP evolution because of the sensitivity issues related to the selected measuring tool. Therefore, multiple diagnostic tools are essential for a comprehensive insight into the entire plasma behavior. Recent improvements in performance in laser and detector systems have expanded the capability of the aforementioned passive and active diagnostic tools. This review provides an overview of optical diagnostic tools frequently employed for the characterization of the LPPs and emphasizes techniques, associated assumptions, and challenges. Considering that most of the industrial and other applications of the LPP belong to low to moderate laser intensities (1081015Wcm2), this review focuses on diagnostic tools pertaining to this regime.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
24 More
  • Received 17 June 2021

DOI:https://doi.org/10.1103/RevModPhys.94.035002

© 2022 American Physical Society

Physics Subject Headings (PhySH)

Plasma Physics

Erratum

Erratum: Optical diagnostics of laser-produced plasmas [Rev. Mod. Phys. 94, 035002 (2022)]

S. S. Harilal, M. C. Phillips, D. H. Froula, K. K. Anoop, R. C. Issac, and F. N. Beg
Rev. Mod. Phys. 96, 019901 (2024)

Authors & Affiliations

S. S. Harilal*

  • Pacific Northwest National Laboratory, Richland, Washington 99352, USA

M. C. Phillips

  • James C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA

D. H. Froula

  • Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA

K. K. Anoop and R. C. Issac

  • Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682022, India

F. N. Beg

  • Center for Energy Research, University of California San Diego, La Jolla, California 92093, USA

  • *hari@pnnl.gov

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 3 — July - September 2022

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Reviews of Modern Physics

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×