Diffusion in metallic glasses and supercooled melts

Franz Faupel, Werner Frank, Michael-Peter Macht, Helmut Mehrer, Volkmar Naundorf, Klaus Rätzke, Herbert R. Schober, Suman K. Sharma, and Helmar Teichler
Rev. Mod. Phys. 75, 237 – Published 24 February 2003
PDFExport Citation

Abstract

Amorphous metallic alloys, also called metallic glasses, are of considerable technological importance. The metastability of these systems, which gives rise to various rearrangement processes at elevated temperatures, calls for an understanding of their diffusional behavior. From the fundamental point of view, these metallic glasses are the paradigm of dense random packing. Since the recent discovery of bulk metallic glasses it has become possible to measure atomic diffusion in the supercooled liquid state and to study the dynamics of the liquid-to-glass transition in metallic systems. In the present article the authors review experimental results and computer simulations on diffusion in metallic glasses and supercooled melts. They consider in detail the experimental techniques, the temperature dependence of diffusion, effects of structural relaxation, the atom-size dependence, the pressure dependence, the isotope effect, diffusion under irradiation, and molecular-dynamics simulations. It is shown that diffusion in metallic glasses is significantly different from diffusion in crystalline metals and involves thermally activated, highly collective atomic processes. These processes appear to be closely related to low-frequency excitations. Similar thermally activated collective processes were also found to mediate diffusion in the supercooled liquid state well above the caloric glass transition temperature. This strongly supports the mode-coupling scenario of the glass transition, which predicts an arrest of liquidlike flow already at a critical temperature well above the caloric glass transition temperature.

    DOI:https://doi.org/10.1103/RevModPhys.75.237

    ©2003 American Physical Society

    Authors & Affiliations

    Franz Faupel*

    • Lehrstuhl für Materialverbunde, Technische Fakultät, Universität Kiel, D-24143 Kiel, Germany

    Werner Frank

    • Max-Planck-Institut für Metallforschung, D-70506 Stuttgart, Germany
    • Institut für Theoretische und Angewandte Physik, Universität Stuttgart, D-70550 Stuttgart, Germany

    Michael-Peter Macht

    • Hahn-Meitner Institut, D-14109 Berlin, Germany

    Helmut Mehrer

    • Institut für Materialphysik, Universität Münster, D-48149 Münster, Germany

    Volkmar Naundorf

    • Hahn-Meitner Institut, D-14109 Berlin, Germany

    Klaus Rätzke

    • Lehrstuhl für Materialverbunde, Technische Fakultät, Universität Kiel, D-24143 Kiel, Germany

    Herbert R. Schober

    • Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany

    Suman K. Sharma

    • Department of Physics, Malaviya National Institute of Technology, Jaipur 302 017, India

    Helmar Teichler

    • Institut für Materialphysik, Universität Göttingen, D-37073 Göttingen, Germany

    • *Corresponding author. Electronic address: ff@tf.uni-kiel.de
    • Formerly: Institut für Metallforschung

    References (Subscription Required)

    Click to Expand
    Issue

    Vol. 75, Iss. 1 — January - March 2003

    Reuse & Permissions
    Access Options
    Author publication services for translation and copyediting assistance advertisement

    Authorization Required


    ×
    ×

    Images

    ×

    Sign up to receive regular email alerts from Reviews of Modern Physics

    Log In

    Cancel
    ×

    Search


    Article Lookup

    Paste a citation or DOI

    Enter a citation
    ×