• Open Access

Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces

Ziqi Miao, Qiong Wu, Xin Li, Qiong He, Kun Ding, Zhenghua An, Yuanbo Zhang, and Lei Zhou
Phys. Rev. X 5, 041027 – Published 16 November 2015
PDFHTMLExport Citation

Abstract

As the basis of a diverse set of photonic applications, such as hologram imaging, polarization, and wave front manipulation, the local phase control of electromagnetic waves is fundamental in photonic research. However, currently available bulky, passive, range-limited phase modulators pose an obstacle in photonic applications. Here, we propose a new mechanism to achieve a wide phase modulation range, with graphene used as a tunable loss to drive an underdamped to overdamped resonator transition. Based on this mechanism, we present widely tunable phase modulation in the terahertz regime, realized in gate-tuned ultrathin reflective graphene metasurfaces. A one-port resonator model, supported by full-wave simulations, explains the underlying physics of the discovered extreme phase modulation and indicates general strategies for designing tunable photonic devices. As an example, we demonstrate a gate-tunable terahertz (THz) polarization modulator with a graphene metasurface. Our findings establish the possibility for photonic applications based on active phase manipulation.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 7 April 2015

DOI:https://doi.org/10.1103/PhysRevX.5.041027

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Authors & Affiliations

Ziqi Miao1, Qiong Wu1, Xin Li1, Qiong He1,2, Kun Ding1, Zhenghua An1,2, Yuanbo Zhang1,2,*, and Lei Zhou1,2,†

  • 1State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
  • 2Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China

  • *zhyb@fudan.edu.cn
  • phzhou@fudan.edu.cn

Popular Summary

Holographic imaging relies on controlling the phase of electromagnetic waves, but conventional phase modulators are often large and expensive. Here, we demonstrate wide-range THz phase modulation with metasurfaces integrating magnetic resonators and gate-controlled grapheme, whose thicknesses are roughly one-tenth the wavelength of the incident radiation. We use a one-port resonator model to explain the essential features of the proposed metasurface, and we show that graphene is a gate-tunable loss material that can be used to modulate the critical transition in the resonator and achieve an extremely large phase modulation.

Previous efforts to modulate the phase of electromagnetic waves largely relied on changing the refractive index of materials or using a metasurface-based phase modulator; a drawback of the latter was that it could not be tuned remotely. Furthermore, many previous studies were only able to achieve phase modulation over a narrow range, which limited the applications of this technique. Here, we modulate the optical conductivity of graphene to change the phase of waves reflected off of the graphene metasurface. We employ a five-layer metasurface, and we change the resistance of the graphene by applying a voltage. We use spectroscopy to study both the amplitude and the phase of the electromagnetic radiation that is reflected, and we employ simulations to explore the physics of our technique. We are able to achieve phase modulation of 180 degrees, but we note that our results are susceptible to a reduction in reflectance (i.e., losses) that is due to absorption and radiation leakage. Finally, we use simulations to reproduce and support our experimental findings.

We expect that our findings will pave the way for other photonic applications in the THz regime.

Key Image

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 5, Iss. 4 — October - December 2015

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review X

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×