• Open Access

Intrinsic Paramagnetic Meissner Effect Due to s-Wave Odd-Frequency Superconductivity

A. Di Bernardo, Z. Salman, X. L. Wang, M. Amado, M. Egilmez, M. G. Flokstra, A. Suter, S. L. Lee, J. H. Zhao, T. Prokscha, E. Morenzoni, M. G. Blamire, J. Linder, and J. W. A. Robinson
Phys. Rev. X 5, 041021 – Published 6 November 2015
PDFHTMLExport Citation

Abstract

In 1933, Meissner and Ochsenfeld reported the expulsion of magnetic flux—the diamagnetic Meissner effect—from the interior of superconducting lead. This discovery was crucial in formulating the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. In exotic superconducting systems BCS theory does not strictly apply. A classical example is a superconductor-magnet hybrid system where magnetic ordering breaks time-reversal symmetry of the superconducting condensate and results in the stabilization of an odd-frequency superconducting state. It has been predicted that under appropriate conditions, odd-frequency superconductivity should manifest in the Meissner state as fluctuations in the sign of the magnetic susceptibility, meaning that the superconductivity can either repel (diamagnetic) or attract (paramagnetic) external magnetic flux. Here, we report local probe measurements of faint magnetic fields in a Au/Ho/Nb trilayer system using low-energy muons, where antiferromagnetic Ho (4.5 nm) breaks time-reversal symmetry of the proximity-induced pair correlations in Au. From depth-resolved measurements below the superconducting transition of Nb, we observe a local enhancement of the magnetic field in Au that exceeds the externally applied field, thus proving the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state.

  • Figure
  • Figure
  • Figure
  • Received 14 July 2015

DOI:https://doi.org/10.1103/PhysRevX.5.041021

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Authors & Affiliations

A. Di Bernardo1, Z. Salman2, X. L. Wang3, M. Amado1, M. Egilmez4, M. G. Flokstra5, A. Suter2, S. L. Lee5, J. H. Zhao3, T. Prokscha2, E. Morenzoni2, M. G. Blamire1, J. Linder6, and J. W. A. Robinson1,*

  • 1Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
  • 2Laboratory for Muon Spectroscopy, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
  • 3State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 4Department of Physics, American University of Sharjah, Sharjah 26666, United Arab Emirates
  • 5School of Physics and Astronomy, SUPA, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
  • 6Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

  • *Corresponding author. jjr33@cam.ac.uk

Popular Summary

Since its discovery in 1911, superconductivity has remained one of the most intriguing phase transitions in the field of condensed-matter physics. Superconductivity, which occurs in certain materials cooled below a critical temperature, involves the disappearance of electrical resistance and the expulsion of external magnetic flux. In 1933, Meissner and Ochsenfeld first reported the expulsion of magnetic flux from the interior of superconducting lead. Their discovery, now known as the Meissner effect, enables the levitation of magnetic objects (e.g., Maglev trains in Japan). For certain unconventional forms of superconductivity, an inverse paramagnetic Meissner effect has been predicted in which superconductivity attracts external flux at a superconductor interface with certain forms of magnetism. In such a system, levitation would not be possible; instead, external flux would be amplified. Here, we probe superconductivity in a thin film of gold coupled to an antiferromagnet-superconductor system using low-energy muons.

Our experimental setup consists of an Au/Ho/Nb trilayer in which each layer has a thickness measured in nanometers. We apply an external field, and we conduct measurements below the superconducting transition of Nb (8.5 K). We find that muon particles implanted with a specific energy in gold experience a change in their precession frequency, which is directly related to the magnitude of the local magnetic flux they experience. Because of the extreme sensitivity of this magnetometry technique to magnetism—smaller than 0.1 G—we detect an enhancement of the local magnetic field in gold that exceeds the externally applied field in the superconducting regime. This result provides a direct observation of the paramagnetic Meissner effect and demonstrates that conventional Meissner screening is not a universal property of superconductivity.

We expect that our findings will motivate future experiments for harnessing magnetic energy that is generated.

Key Image

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 5, Iss. 4 — October - December 2015

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review X

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×