• Open Access

Ultrasensitive Atomic Spin Measurements with a Nonlinear Interferometer

R. J. Sewell, M. Napolitano, N. Behbood, G. Colangelo, F. Martin Ciurana, and M. W. Mitchell
Phys. Rev. X 4, 021045 – Published 9 June 2014

Abstract

We study nonlinear interferometry applied to a measurement of atomic spin and demonstrate a sensitivity that cannot be achieved by any linear-optical measurement with the same experimental resources. We use alignment-to-orientation conversion, a nonlinear-optical technique from optical magnetometry, to perform a nondestructive measurement of the spin alignment of a cold Rb87 atomic ensemble. We observe state-of-the-art spin sensitivity in a single-pass measurement, in good agreement with covariance-matrix theory. Taking the degree of measurement-induced spin squeezing as a figure of merit, we find that the nonlinear technique’s experimental performance surpasses the theoretical performance of any linear-optical measurement on the same system, including optimization of probe strength and tuning. The results confirm the central prediction of nonlinear metrology, that superior scaling can lead to superior absolute sensitivity.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 28 January 2014

DOI:https://doi.org/10.1103/PhysRevX.4.021045

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Authors & Affiliations

R. J. Sewell1,*, M. Napolitano1, N. Behbood1, G. Colangelo1, F. Martin Ciurana1, and M. W. Mitchell1,2

  • 1ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
  • 2ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain

  • *robert.sewell@icfo.es

Popular Summary

Interferometric measurements form the basis of the most sensitive instruments, including gravitational wave detectors, atomic clocks, and optical magnetometers. The quantum theory of linear interferometers has been studied in detail, and quantum enhancements such as spin squeezing have been demonstrated in demanding, real-world applications. On the other hand, nonlinear interferometers, a class of devices that includes both optical magnetometers and Bose-Einstein condensates, have only recently begun to be understood at the quantum level. We demonstrate an ultrasensitive, nondestructive nonlinear measurement of atomic spin that achieves state-of-the-art sensitivity and, moreover, surpasses the best possible linear measurement of the same spin component.

A key feature of nonlinear interferometers is their so-called super-Heisenberg scaling, in which the sensitivity improves with particle number faster than even the best quantum-enhanced linear measurement. Better scaling suggests a fundamentally better approach, guaranteed to surpass linear interferometry for sufficient particle number. This suggestion has been the subject of much recent debate and, to date, is unconfirmed by experiment. We nondestructively measure the spin alignment of 6×105 laser-cooled Rb87 atoms in an optical dipole trap using 2-μs-long pulses of light. We show how the atomic spin-alignment component scales with photon number, in agreement with covariance-matrix theory. Our nonlinear measurements become more sensitive than linear measurements when the photon number increases above 3×107, confirming the theoretical prediction that improved scaling should lead to greater sensitivity. We furthermore reproduce spin squeezing (i.e., better metrological sensitivity), which would not be induced for linear measurements given our experimental parameters.

The ability of nonlinear measurements to detect spin alignment is an improvement over previous analyses, which could only infer spin orientation. Furthermore, we expect that nonlinear measurements will contribute to the detection and preparation of exotic quantum phases in ensembles of ultracold atoms.

Key Image

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 4, Iss. 2 — April - June 2014

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review X

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×