• Open Access

Do Cloaked Objects Really Scatter Less?

Francesco Monticone and Andrea Alù
Phys. Rev. X 3, 041005 – Published 21 October 2013
An article within the collection: Special Section on Metamaterials
PDFHTMLExport Citation

Abstract

We discuss the global scattering response of invisibility cloaks over the entire electromagnetic spectrum, from static to very high frequencies. Based on linearity, causality, and energy conservation, we show that the total extinction and scattering, integrated over all wavelengths, of any linear, passive, causal, and nondiamagnetic cloak, necessarily increase compared to the uncloaked case. In light of this general principle, we provide a quantitative measure to compare the global performance of different cloaking techniques and we discuss solutions to minimize the global scattering signature of an object using thin, superconducting shells. Our results provide important physical insights on how invisibility cloaks operate and affect the global scattering of an object, suggesting ways to defeat countermeasures aimed at detecting cloaked objects using short impinging pulses.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 9 July 2013

DOI:https://doi.org/10.1103/PhysRevX.3.041005

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Collections

This article appears in the following collection:

Special Section on Metamaterials

A Physical Review X special section on the emerging field of metamaterials.

Authors & Affiliations

Francesco Monticone and Andrea Alù*

  • Department of Electrical and Computer Engineering, The University of Texas at Austin, 1 University Station C0803, Austin, Texas 78712, USA

  • *alu@mail.utexas.edu

Popular Summary

From ancient times, humanity has been fascinated by the concept of invisibility, and recently, scientists have moved a step closer to bringing this idea to reality by exploiting engineered artificial materials, or metamaterials. Several recent studies have indeed shown that a properly tailored metamaterial cover can, in principle, render an object invisible when illuminated by an electromagnetic wave oscillating at the specific frequency of interest. Yet, experimental realizations and theoretical investigations have consistently shown that reducing the visibility of an object with a passive cloak in a specific window of the electromagnetic spectrum is generally accompanied by a drastic increase of its visibility in other frequency ranges. Making an object invisible to red light, for instance, may actually make it bright blue, increasing its overall visibility.

In this paper, we quantitatively assess the potentials and limitations of passive cloaks in terms of overall visibility, integrated over the entire frequency spectrum. Quite surprisingly, our results show that any linear, causal, and passive invisibility cloak, without special superconducting features, is deemed to increase the scattering and visibility of the original uncloaked object, when integrated over all frequencies. This result confirms that the most popular cloaking devices actually scatter more, not less, when considered over a sufficiently broad frequency range, allowing easy detection using, e.g., pulsed excitation.

Our general theorem holds a relevant exception if specific covers with a strong static diamagnetism are considered, and, based on this principle, we propose a technique to reduce the global scattering, as well as the local response around a frequency of interest, using diamagnetic and superconducting thin cloaking layers. More generally, our results provide a quantitative measure to compare the overall performance of different cloaking devices and generally assess their detectability. These findings may open important research directions in the quest for invisibility, not only in the electromagnetic domain but also for acoustic, mechanical, and matter waves.

Key Image

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 3, Iss. 4 — October - December 2013

Subject Areas
Reuse & Permissions

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review X

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×