• Open Access

Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes

Earl T. Campbell, Hussain Anwar, and Dan E. Browne
Phys. Rev. X 2, 041021 – Published 27 December 2012

Abstract

We propose families of protocols for magic-state distillation—important components of fault-tolerance schemes—for systems of odd prime dimension. Our protocols utilize quantum Reed-Muller codes with transversal non-Clifford gates. We find that, in higher dimensions, small and effective codes can be used that have no direct analogue in qubit (two-dimensional) systems. We present several concrete protocols, including schemes for three-dimensional (qutrit) and five-dimensional (ququint) systems. The five-dimensional protocol is, by many measures, the best magic-state-distillation scheme yet discovered. It excels both in terms of error threshold with respect to depolarizing noise (36.3%) and the efficiency measure known as yield, where, for a large region of parameters, it outperforms its qubit counterpart by many orders of magnitude.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 29 May 2012

DOI:https://doi.org/10.1103/PhysRevX.2.041021

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Authors & Affiliations

Earl T. Campbell1,*, Hussain Anwar2, and Dan E. Browne2

  • 1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
  • 2Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

  • *earltcampbell@gmail.com

Popular Summary

A quantum computer exploits the nonclassical aspects of quantum mechanics, but its extreme sensitivity to noise makes fault-tolerant techniques a must for it to operate reliably. A key component in high-threshold fault-tolerance schemes is the preparation of magic states, quantum states in a superposition of classical states, that are required to exploit quantum effects. However, the slightest of experimental imperfections results in the preparation of flawed magic states, unsuitable for immediate use in quantum computers. Fortunately, many copies of flawed magic states can be distilled down to a smaller number of suitable magic states. This process of magic-state distillation, however, forms a bottleneck in implementations of the already proposed fault-tolerant techniques in terms of the impractically high overheads in resources such as memory and running time. Unless overcome, such overhead costs could consign quantum computers to history books as a theoretically possible, but practically infeasible, technology. We propose in this paper that a shift of magic-state distillation from the current qubit paradigm (involving two-level systems) to a qudit one (involving d-level systems) may provide a way to overcome the overhead bottleneck.

Our starting point was curiosity: Can we achieve magic-state distillation in more complex systems? Quantum computing is usually conceived in terms of qubits, but this need not be the case. In fact, qudits can be the basis for a quantum computer, and we designed methods of magic-state distillation for all prime numbers d. To our surprise, by exploiting new insights into number-theoretic properties of qudit computers, some of our protocols offer substantial improvements over their better-known qubit cousins. In particular, five levels appear as the optimal case where our protocol outperforms all previously discovered protocols in all figures of merit. Notably, the potential resource savings in device memory could easily be on the order of a millionfold.

This work opens the door for the development of qudit-based fault-tolerance schemes based on magic-state distillation. These schemes may offer significant advantages over their qubit counterparts and hence bring the development of a scalable quantum computer closer to our grasp.

Key Image

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 4 — October - December 2012

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review X

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×