• Open Access

Use of research-based instructional strategies in introductory physics: Where do faculty leave the innovation-decision process?

Charles Henderson, Melissa Dancy, and Magdalena Niewiadomska-Bugaj
Phys. Rev. ST Phys. Educ. Res. 8, 020104 – Published 31 July 2012

Abstract

During the fall of 2008 a web survey, designed to collect information about pedagogical knowledge and practices, was completed by a representative sample of 722 physics faculty across the United States (50.3% response rate). This paper presents partial results to describe how 20 potential predictor variables correlate with faculty knowledge about and use of research-based instructional strategies (RBIS). The innovation-decision process was conceived of in terms of four stages: knowledge versus no knowledge, trial versus no trial, continuation versus discontinuation, and high versus low use. The largest losses occur at the continuation stage, with approximately 1/3 of faculty discontinuing use of all RBIS after trying one or more of these strategies. Nine of the predictor variables were statistically significant for at least one of these stages when controlling for other variables. Knowledge and/or use of RBIS are significantly correlated with reading teaching-related journals, attending talks and workshops related to teaching, attending the physics and astronomy new faculty workshop, having an interest in using more RBIS, being female, being satisfied with meeting instructional goals, and having a permanent, full-time position. The types of variables that are significant at each stage vary substantially. These results suggest that common dissemination strategies are good at creating knowledge about RBIS and motivation to try a RBIS, but more work is needed to support faculty during implementation and continued use of RBIS. Also, contrary to common assumptions, faculty age, institutional type, and percentage of job related to teaching were not found to be barriers to knowledge or use at any stage. High research productivity and large class sizes were not found to be barriers to use of at least some RBIS.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 February 2012

DOI:https://doi.org/10.1103/PhysRevSTPER.8.020104

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Authors & Affiliations

Charles Henderson

  • Department of Physics and Mallinson Institute for Science Education, Western Michigan University, Kalamazoo, Michigan 49008, USA

Melissa Dancy

  • Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

Magdalena Niewiadomska-Bugaj

  • Department of Statistics, Western Michigan University, Kalamazoo, Michigan 49008, USA

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 8, Iss. 2 — July - December 2012

Reuse & Permissions
Access Options
CHORUS

Article part of CHORUS

Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×