• Open Access

Adding and subtracting vectors: The problem with the arrow representation

Andrew F. Heckler and Thomas M. Scaife
Phys. Rev. ST Phys. Educ. Res. 11, 010101 – Published 20 January 2015

Abstract

A small number of studies have investigated student understanding of vector addition and subtraction in generic or introductory physics contexts, but in almost all cases the questions posed were in the vector arrow representation. In a series of experiments involving over 1000 students and several semesters, we investigated student understanding of vector addition and subtraction in both the arrow and algebraic notation (using i^, j^, k^) in generic mathematical and physics contexts. First, we replicated a number of previous findings of student difficulties in the arrow format and discovered several additional difficulties, including the finding that different relative arrow orientations can prompt different solution paths and different kinds of mistakes, which suggests that students need to practice with a variety of relative orientations. Most importantly, we found that average performance in the ijk format was typically excellent and often much better than performance in the arrow format in either the generic or physics contexts. Further, while we find that the arrow format tends to prompt students to a more physically intuitive solution path, we also find that, when prompted, student solutions in the ijk format also display significant physical insights into the problem. We also find a hierarchy in correct answering between the two formats, with correct answering in the ijk format being more fundamental than for the arrow format. Overall, the results suggest that many student difficulties with these simple vector problems lie with the arrow representation itself. For instruction, these results imply that introducing the ijk notation (or some equivalent) with the arrow notation concurrently may be a very useful way to improve student performance as well as help students to learn physics concepts involving vector addition and subtraction.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 28 May 2014

DOI:https://doi.org/10.1103/PhysRevSTPER.11.010101

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Authors & Affiliations

Andrew F. Heckler

  • Department of Physics, Ohio State University, Columbus, Ohio 43210, USA

Thomas M. Scaife

  • Department of Chemistry and Engineering Physics, University of Wisconsin-Platteville, Platteville, Wisconsin 53818, USA

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 11, Iss. 1 — January - June 2015

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×