• Open Access

Learning to control active matter

Martin J. Falk, Vahid Alizadehyazdi, Heinrich Jaeger, and Arvind Murugan
Phys. Rev. Research 3, 033291 – Published 30 September 2021
PDFHTMLExport Citation

Abstract

The study of active matter has revealed novel non-equilibrium collective behaviors, illustrating their potential as a new materials platform. However, most work treat active matter as unregulated systems with uniform microscopic energy input, which we refer to as activity. In contrast, functionality in biological materials results from regulating and controlling activity locally over space and time, as has only recently become experimentally possible for engineered active matter. Designing functionality requires navigation of the high-dimensional space of spatio-temporal activity patterns, but brute force approaches are unlikely to be successful without system-specific intuition. Here, we apply reinforcement learning to the task of inducing net transport in a specific direction for a simulated system of Vicsek-like self-propelled disks using a spotlight that increases activity locally. The resulting time-varying patterns of activity learned exploit the distinct physics of the strong and weak coupling regimes. Our work shows how reinforcement learning can reveal physically interpretable protocols for controlling collective behavior in non-equilibrium systems.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 11 May 2021
  • Accepted 25 August 2021

DOI:https://doi.org/10.1103/PhysRevResearch.3.033291

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Polymers & Soft MatterGeneral PhysicsNetworks

Authors & Affiliations

Martin J. Falk, Vahid Alizadehyazdi, Heinrich Jaeger, and Arvind Murugan

  • Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 3, Iss. 3 — September - November 2021

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×