• Open Access

Tunable moire spinons in magnetically encapsulated twisted van der Waals quantum spin liquids

Guangze Chen and J. L. Lado
Phys. Rev. Research 3, 033276 – Published 24 September 2021

Abstract

Quantum spin-liquid van der Waals magnets such as TaS2, TaSe2, and RuCl3 provide a natural platform to explore new exotic phenomena associated with spinon physics, whose properties can be controlled by exchange proximity with ferromagnetic insulators such as CrBr3. Here we put forward a twisted van der Waals heterostructure based on a quantum spin-liquid bilayer encapsulated between ferromagnetic insulators. We demonstrate the emergence of spinon flat bands and topological spinon states in such heterostructure, where the emergence of a topological gap is driven by the twist. We further show that the spinon band structure can be controlled via exchange proximity effect to the ferromagnetic leads. We finally show how by combining small magnetic fields with tunneling spectroscopy, magnetically encapsulated heterostructures provide a way of characterizing the nature of the quantum spin-liquid state. Our results put forward twisted quantum spin-liquid bilayers as potential platforms for exotic moire spinon phenomena, demonstrating the versatility of magnetic van der Waals heterostructures.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 February 2021
  • Revised 5 July 2021
  • Accepted 31 August 2021

DOI:https://doi.org/10.1103/PhysRevResearch.3.033276

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Guangze Chen and J. L. Lado

  • Department of Applied Physics, Aalto University, 02150 Espoo, Finland

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 3, Iss. 3 — September - November 2021

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×