• Open Access

Spontaneous fluctuations in a magnetic Fe/Gd skyrmion lattice

M. H. Seaberg et al.
Phys. Rev. Research 3, 033249 – Published 15 September 2021

Abstract

Magnetic skyrmions are topological spin textures that exhibit classical or quantum quasiparticle behavior. A substantial amount of research has occurred in this field, both because of their unique electromagnetic properties and potential application for future nonvolatile memory storage applications, as well as fundamental questions on their topology and unique magnetic phases. Here, we investigate the fluctuation properties of a magnetic Fe/Gd skyrmion lattice, using short-pulsed x rays. We first measure spontaneous fluctuations of the skyrmion lattice phase and find an inherent, collective mode showing an underdamped oscillation with a relaxation of a couple of nanoseconds. Further observations track the response towards the continuous phase transition and a “critical-like” slowing down of fluctuations is observed well before the critical point. These results suggest that the skyrmion lattice phase never fully freezes into a static crystal. This constant state of fluctuation indicates that the physics of topological magnetic phases may have more in common with high-temperature superconductors with disorder.

  • Figure
  • Figure
  • Figure
  • Received 8 February 2021
  • Revised 29 April 2021
  • Accepted 19 August 2021

DOI:https://doi.org/10.1103/PhysRevResearch.3.033249

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 3, Iss. 3 — September - November 2021

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×