• Rapid Communication
  • Open Access

Tunable quantum interference effect on magnetoconductivity in few-layer black phosphorus

Sunghoon Kim and Hongki Min
Phys. Rev. Research 2, 022045(R) – Published 28 May 2020

Abstract

In this Rapid Communication, we develop a systematic weak localization and antilocalization theory fully considering the anisotropy and Berry phase of the system, and apply it to various phases of few-layer black phosphorus (BP), which has a highly anisotropic electronic structure with an electronic gap size tunable even to a negative value. The derivation of a Cooperon ansatz for the Bethe-Salpeter equation in a general anisotropic system is presented, revealing the existence of various quantum interference effects in different phases of few-layer BP, including a crossover from weak localization to antilocalization. We also predict that the magnetoconductivity at the semi-Dirac transition point will exhibit a nontrivial power-law dependence on the magnetic field, while following the conventional logarithmic field dependence of two-dimensional systems in the insulator and Dirac semimetal phases. Notably, the ratio between the magnetoconductivity and Boltzmann conductivity turns out to be independent of the direction, even in strongly anisotropic systems. Finally, we discuss the tunability of the quantum corrections of few-layer BP in terms of the symmetry class of the system.

  • Figure
  • Figure
  • Figure
  • Received 5 December 2019
  • Revised 29 April 2020
  • Accepted 7 May 2020

DOI:https://doi.org/10.1103/PhysRevResearch.2.022045

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Sunghoon Kim and Hongki Min*

  • Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

  • *hmin@snu.ac.kr

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 2 — May - July 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×