• Editors' Suggestion
  • Open Access

Time delays in ultracold atomic and molecular collisions

Matthew D. Frye and Jeremy M. Hutson
Phys. Rev. Research 1, 033023 – Published 15 October 2019

Abstract

We study the behavior of the Eisenbud-Wigner collisional time delay around Feshbach resonances in cold and ultracold atomic and molecular collisions. We carry out coupled-channel scattering calculations on ultracold Rb and Cs collisions. In the low-energy limit, the time delay is proportional to the scattering length and so exhibits a pole as a function of applied field. At high energy, it exhibits a Lorentzian peak as a function of either energy or field. For narrow resonances, the crossover between these two regimes occurs at an energy proportional to the square of the resonance strength parameter sres. For wider resonances, the behavior is more complicated and we present an analysis in terms of multichannel quantum defect theory.

  • Figure
  • Figure
  • Figure
  • Received 24 July 2019

DOI:https://doi.org/10.1103/PhysRevResearch.1.033023

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

Matthew D. Frye and Jeremy M. Hutson

  • Joint Quantum Centre Durham-Newcastle, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 1, Iss. 3 — October - December 2019

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×