• Open Access

Analyzing interviews on computational thinking for introductory physics students: Toward a generalized assessment

Justin Gambrell and Eric Brewe
Phys. Rev. Phys. Educ. Res. 20, 010128 – Published 26 April 2024

Abstract

Computational thinking in physics has many different forms, definitions, and implementations depending on the level of physics or the institution it is presented in. To better integrate computational thinking in introductory physics, we need to understand what physicists find important about computational thinking in introductory physics. We present a qualitative analysis of 26 interviews asking academic (N_a=18) and industrial (N_i=8) physicists about the teaching and learning of computational thinking in introductory physics courses. These interviews are part of a long-term project toward developing an assessment protocol for computational thinking in introductory physics. We find that academic and industrial physicists value students’ ability to read code and that python (or vpython) and spreadsheets were the preferred computational language or environment used. Additionally, the interviewees mentioned that identifying the core physics concepts within a program, explaining code to others, and good program hygiene (i.e., commenting and using meaningful variable names) are important skills for introductory students to acquire. We also find that while a handful of interviewees note that the experience and skills gained from computation are quite useful for student’s future careers, they also describe multiple limiting factors of teaching computation in introductory physics, such as curricular overhaul, not having “space” for computation’, and student rejection. The interviews show that while adding computational thinking to physics students’ repertoire is important, the importance really comes from using computational thinking to learn and understand physics better. This informs us that the assessment we develop should only include the basics of computational thinking needed to assess introductory physics knowledge.

  • Figure
  • Received 7 August 2023
  • Accepted 5 March 2024

DOI:https://doi.org/10.1103/PhysRevPhysEducRes.20.010128

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

  1. Research Areas
Physics Education Research

Authors & Affiliations

Justin Gambrell and Eric Brewe

  • Department of Physics, Drexel University, Disque Hall, 32 S 32nd Street, Philadelphia, Pennsylvania 19104, USA

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 20, Iss. 1 — January - June 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×