• Open Access

Beyond normalized gain: Improved comparison of physics educational outcomes

Elaine Christman, Paul Miller, and John Stewart
Phys. Rev. Phys. Educ. Res. 20, 010123 – Published 9 April 2024

Abstract

This study proposes methods of reporting results of physics conceptual evaluations that more fully characterize the range of outcomes experienced by students with differing levels of prior preparation, allowing for more meaningful comparison of the outcomes of educational interventions within and across institutions. Factors leading to variation in post-test scores on the Force and Motion Conceptual Evaluation (FMCE) across different instructors, semesters, and course models in a sample collected in introductory calculus-based mechanics at a large, eastern land-grant university were examined. The sample was collected over nine years and contains a total of N=4409 matched pretest and post-test records. The data showed a systematic semester-by-semester variation in both pretest scores and ACT or SAT mathematics percentile scores. Neither the normalized gain nor Cohen’s d removed the semester-to-semester variation observed in post-test scores. The local average curve plotting post-test scores against pretest scores, which we call a conceptual growth curve, allowed for the characterization of outcomes for students with different pretest scores. Regression models were used to produce an approximation to this curve. By using either the full curve or a mathematical approximation developed through linear regression, the post-test score that would be observed if a class enrolled students with a given level of prior preparation measured by pretest scores can be predicted. This predicted post-test score can then be used to calculate the predicted normalized gain if desired. These methods rely on using the natural variation of incoming student preparation at one institution to predict how a class would perform if it enrolled students with different prior preparation. The study presents an example of converting the outcomes at an institution with a weakly prepared student population to the outcomes which would have been observed if the course enrolled a more prepared student population; converting the outcomes for a different student population dramatically changed the interpretation of how the class studied was functioning.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 4 April 2023
  • Accepted 25 March 2024

DOI:https://doi.org/10.1103/PhysRevPhysEducRes.20.010123

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Physics Education Research

Authors & Affiliations

Elaine Christman, Paul Miller, and John Stewart*

  • West Virginia University, Department of Physics and Astronomy, Morgantown, West Virginia 26506, USA

  • *jcstewart1@mail.wvu.edu

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 20, Iss. 1 — January - June 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×