• Open Access

Enhancing student visual understanding of the time evolution of quantum systems

Gina Passante and Antje Kohnle
Phys. Rev. Phys. Educ. Res. 15, 010110 – Published 13 February 2019

Abstract

Time dependence is of fundamental importance for the description of quantum systems, but is particularly difficult for students to master. We describe the development and evaluation of a combined simulation-tutorial to support the development of visual understanding of time dependence in quantum mechanics. The associated interactive simulation shows the time dependence of an energy eigenstate and a superposition state, and how the time dependence of the probability density arises from that of the wave function. In order to assess transitions in student thinking, we developed a framework to characterize student responses in terms of real and complex mathematical reasoning and classical and quantum visual reasoning. The results of pre-, mid-, and post-tests indicate that the simulation-tutorial supports the development of visual understanding of time dependence, and that visual reasoning is correlated with improved student performance on a question relating to the time evolution of the wave function and the probability density. The results also indicate that the analogy of a classical standing wave for the infinite well energy eigenfunctions may be problematic in cueing incorrect ideas of time dependence.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 4 September 2018

DOI:https://doi.org/10.1103/PhysRevPhysEducRes.15.010110

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Physics Education Research

Authors & Affiliations

Gina Passante1,* and Antje Kohnle2

  • 1Department of Physics, California State University Fullerton, Fullerton, California 92831, USA
  • 2School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, United Kingdom

  • *gpassante@fullerton.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 15, Iss. 1 — January - June 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×