• Open Access

Multidimensional item response theory and the Force Concept Inventory

John Stewart, Cabot Zabriskie, Seth DeVore, and Gay Stewart
Phys. Rev. Phys. Educ. Res. 14, 010137 – Published 13 June 2018
PDFHTMLExport Citation

Abstract

Research on the test structure of the Force Concept Inventory (FCI) has largely been performed with exploratory methods such as factor analysis and cluster analysis. Multidimensional Item Response Theory (MIRT) provides an alternative to traditional exploratory factor analysis which allows statistical testing to identify the optimal number of factors. Application of MIRT to a sample of N=4716 FCI post-tests identified a 9-factor solution as optimal. Additional analysis showed that a substantial part of the identified factor structure resulted from the practice of using problem blocks and from pairs of similar questions. Applying MIRT to a reduced set of FCI items removing blocked items and repeated items produced a 6-factor solution; however, the factors still had little relation the general structure of Newtonian mechanics. A theoretical model of the FCI was constructed from expert solutions and fit to the FCI by constraining the MIRT parameter matrix to the theoretical model. Variations on the theoretical model were then explored to identify an optimal model. The optimal model supported the differentiation of Newton’s 1st and 2nd law; of one-dimensional and three-dimensional kinematics; and of the principle of the addition of forces from Newton’s 2nd law. The model suggested by the authors of the FCI was also fit; the optimal MIRT model was statistically superior.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 8 March 2018

DOI:https://doi.org/10.1103/PhysRevPhysEducRes.14.010137

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Physics Education Research

Authors & Affiliations

John Stewart*, Cabot Zabriskie, Seth DeVore, and Gay Stewart

  • Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, USA

  • *jcstewart1@mail.wvu.edu

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 14, Iss. 1 — January - June 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×