• Open Access

Challenges in designing appropriate scaffolding to improve students’ representational consistency: The case of a Gauss’s law problem

Alexandru Maries, Shih-Yin Lin, and Chandralekha Singh
Phys. Rev. Phys. Educ. Res. 13, 020103 – Published 2 August 2017

Abstract

Prior research suggests that introductory physics students have difficulty with graphing and interpreting graphs. Here, we discuss an investigation of student difficulties in translating between mathematical and graphical representations for a problem in electrostatics and the effect of increasing levels of scaffolding on students’ representational consistency. Students in calculus-based introductory physics were given a typical problem that can be solved using Gauss’s law involving a spherically symmetric charge distribution in which they were asked to write a mathematical expression for the electric field in various regions and then plot the electric field. In study 1, we found that students had great difficulty in plotting the electric field as a function of the distance from the center of the sphere consistent with the mathematical expressions in various regions, and interviews with students suggested possible reasons which may account for this difficulty. Therefore, in study 2, we designed two scaffolding interventions with levels of support which built on each other (i.e., the second scaffolding level built on the first) in order to help students plot their expressions consistently and compared the performance of students provided with scaffolding with a comparison group which was not given any scaffolding support. Analysis of student performance with different levels of scaffolding reveals that scaffolding from an expert perspective beyond a certain level may sometimes hinder student performance and students may not even discern the relevance of the additional support. We provide possible interpretations for these findings based on in-depth, think-aloud student interviews.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 25 October 2016

DOI:https://doi.org/10.1103/PhysRevPhysEducRes.13.020103

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Physics Education Research

Authors & Affiliations

Alexandru Maries1, Shih-Yin Lin2, and Chandralekha Singh3

  • 1Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
  • 2Department of Physics, National Changhua University of Education, Changhua 500, Taiwan
  • 3Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 13, Iss. 2 — July - December 2017

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×