• Open Access

Students’ conceptual performance on synthesis physics problems with varying mathematical complexity

Bashirah Ibrahim, Lin Ding, Andrew F. Heckler, Daniel R. White, and Ryan Badeau
Phys. Rev. Phys. Educ. Res. 13, 010133 – Published 28 June 2017

Abstract

A body of research on physics problem solving has focused on single-concept problems. In this study we use “synthesis problems” that involve multiple concepts typically taught in different chapters. We use two types of synthesis problems, sequential and simultaneous synthesis tasks. Sequential problems require a consecutive application of fundamental principles, and simultaneous problems require a concurrent application of pertinent concepts. We explore students’ conceptual performance when they solve quantitative synthesis problems with varying mathematical complexity. Conceptual performance refers to the identification, follow-up, and correct application of the pertinent concepts. Mathematical complexity is determined by the type and the number of equations to be manipulated concurrently due to the number of unknowns in each equation. Data were collected from written tasks and individual interviews administered to physics major students (N=179) enrolled in a second year mechanics course. The results indicate that mathematical complexity does not impact students’ conceptual performance on the sequential tasks. In contrast, for the simultaneous problems, mathematical complexity negatively influences the students’ conceptual performance. This difference may be explained by the students’ familiarity with and confidence in particular concepts coupled with cognitive load associated with manipulating complex quantitative equations. Another explanation pertains to the type of synthesis problems, either sequential or simultaneous task. The students split the situation presented in the sequential synthesis tasks into segments but treated the situation in the simultaneous synthesis tasks as a single event.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 22 December 2016

DOI:https://doi.org/10.1103/PhysRevPhysEducRes.13.010133

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Physics Education Research

Authors & Affiliations

Bashirah Ibrahim1, Lin Ding1,*, Andrew F. Heckler2, Daniel R. White2, and Ryan Badeau2

  • 1Department of Teaching and Learning, The Ohio State University, Columbus, Ohio 43210, USA
  • 2Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

  • *Corresponding author. ding.65@osu.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 13, Iss. 1 — January - June 2017

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×