Short-range order and compositional phase stability in refractory high-entropy alloys via first-principles theory and atomistic modeling: NbMoTa, NbMoTaW, and VNbMoTaW

Christopher D. Woodgate and Julie B. Staunton
Phys. Rev. Materials 7, 013801 – Published 30 January 2023
PDFHTMLExport Citation

Abstract

Using an all-electron, first-principles, Landau-type theory, we study the nature of short-range order and compositional phase stability in equiatomic refractory high-entropy alloys, NbMoTa, NbMoTaW, and VNbMoTaW. We also investigate selected binary subsystems to provide insight into the physical mechanisms driving order. Our approach examines the short-range order of the solid solutions directly, infers disorder/order transitions, and also extracts parameters suitable for atomistic modeling of diffusional phase transformations. We find a hierarchy of relationships between the chemical species in these materials which promote ordering tendencies. The most dominant is a relative atomic size difference between the 3d element, V, and the other 4d and 5d elements which drives a B32-like order. For systems where V is not present, ordering is dominated by the difference in filling of valence states; pairs of elements that are isoelectronic remain weakly correlated to low temperatures, while pairs with a valence difference present B2-like order. Our estimated order-disorder transition temperature in VNbMoTaW is sufficiently high for us to suggest that SRO in this material may be experimentally observable.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 17 November 2022
  • Accepted 17 January 2023

DOI:https://doi.org/10.1103/PhysRevMaterials.7.013801

©2023 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Christopher D. Woodgate and Julie B. Staunton

  • Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 7, Iss. 1 — January 2023

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×