X-ray absorption and x-ray magnetic circular dichroism in bulk and thin films of ferrimagnetic GdTiO3

R. Aeschlimann, M. N. Grisolia, G. Sanchez-Santolino, J. Varignon, F. Choueikani, R. Mattana, V. Garcia, S. Fusil, T. Fröhlich, M. Braden, B. Delley, M. Varela, P. Ohresser, J. Santamaria, A. Barthélémy, C. Piamonteze, and M. Bibes
Phys. Rev. Materials 5, 014407 – Published 13 January 2021

Abstract

Perovskite rare-earth titanates are prototypical Mott insulators in which Ti3+ ions with 3d1 electronic configuration exhibit ferromagnetic or antiferromagnetic spin order, depending on the rare-earth size. This peculiar magnetic behavior has, however, been barely studied with element-specific probes, either in bulk or in thin films. The recent finding of fingerprints of ferromagnetism in two-dimensional electron gases at oxide interfaces involving rare-earth titanates has produced a surge of the interest in these complex materials. Harnessing the interfacial magnetic states in these heterostructures calls for a better understanding of their insufficiently explored magnetic states in bulk and especially in thin film form. In this paper, we combine high-resolution transmission electron microscopy with x-ray absorption spectroscopy and x-ray magnetic circular dichroism (XMCD) to determine the structural, electronic, and magnetic structure of GdTiO3 in bulk and thin film form. In both cases, we find that the sample surface is strongly overoxidized but a few nm below, Ti is mostly 3+ and shows a large XMCD. We provide evidence for the ferrimagnetic nature of GdTiO3 with antialigned Gd and Ti sublattices and show that, just as in antiferromagnetic LaTiO3 or ferromagnetic YTiO3, Ti carries no orbital moment.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 5 October 2020
  • Accepted 16 December 2020

DOI:https://doi.org/10.1103/PhysRevMaterials.5.014407

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

R. Aeschlimann1, M. N. Grisolia1, G. Sanchez-Santolino2, J. Varignon1,3, F. Choueikani4, R. Mattana1, V. Garcia1, S. Fusil1, T. Fröhlich5, M. Braden5, B. Delley6, M. Varela2, P. Ohresser4, J. Santamaria2, A. Barthélémy1, C. Piamonteze6, and M. Bibes1,*

  • 1Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
  • 2Facultad de CC. Físicas & Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
  • 3Laboratoire de Cristallographie et Sciences des Matériaux, UMR6508 CNRS, ENSICAEN, Université de Caen-Basse Normandie, 6 bd Maréchal Juin, 14050 Caen, France
  • 4Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
  • 5II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany
  • 6Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

  • *manuel.bibes@cnrs-thales.fr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 5, Iss. 1 — January 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×