Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche
Phys. Rev. Lett. 83, 5166 – Published 13 December 1999
PDFExport Citation

Abstract

We have realized a quantum phase gate operating on quantum bits carried by a single Rydberg atom and a zero- or one-photon field in a high- Q cavity. The gate operation is based on the dephasing of the atom-field state produced by a full cycle of quantum Rabi oscillation. The dephasing angle, conditioned to the initial atom-field state, can be adjusted over a wide range by tuning the atom-cavity frequency difference. We demonstrate that the gate preserves qubit coherence and generates entanglement. This gate is an essential tool for the nondestructive measurement of single photons and for the manipulation of many-qubit entanglement in cavity QED.

  • Received 29 July 1999

DOI:https://doi.org/10.1103/PhysRevLett.83.5166

©1999 American Physical Society

Authors & Affiliations

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche

  • Laboratoire Kastler Brossel, Département de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris Cedex 05, France

References (Subscription Required)

Click to Expand
Issue

Vol. 83, Iss. 24 — 13 December 1999

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×