• Editors' Suggestion
  • Open Access

Combining Reinforcement Learning and Tensor Networks, with an Application to Dynamical Large Deviations

Edward Gillman, Dominic C. Rose, and Juan P. Garrahan
Phys. Rev. Lett. 132, 197301 – Published 7 May 2024

Abstract

We present a framework to integrate tensor network (TN) methods with reinforcement learning (RL) for solving dynamical optimization tasks. We consider the RL actor-critic method, a model-free approach for solving RL problems, and introduce TNs as the approximators for its policy and value functions. Our “actor-critic with tensor networks” (ACTeN) method is especially well suited to problems with large and factorizable state and action spaces. As an illustration of the applicability of ACTeN we solve the exponentially hard task of sampling rare trajectories in two paradigmatic stochastic models, the East model of glasses and the asymmetric simple exclusion process, the latter being particularly challenging to other methods due to the absence of detailed balance. With substantial potential for further integration with the vast array of existing RL methods, the approach introduced here is promising both for applications in physics and to multi-agent RL problems more generally.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 3 November 2022
  • Revised 28 February 2024
  • Accepted 4 April 2024

DOI:https://doi.org/10.1103/PhysRevLett.132.197301

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Edward Gillman1,2, Dominic C. Rose3, and Juan P. Garrahan1,2

  • 1School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
  • 2Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
  • 3Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 132, Iss. 19 — 10 May 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×