• Open Access

Quantum-Enhanced Absorption Spectroscopy with Bright Squeezed Frequency Combs

Alexandre Belsley
Phys. Rev. Lett. 130, 133602 – Published 28 March 2023
PDFHTMLExport Citation

Abstract

Absorption spectroscopy is a widely used technique that permits the detection and characterization of gas species at low concentrations. We propose a sensing strategy combining the advantages of frequency modulation spectroscopy with the reduced noise properties accessible by squeezing the probe state. A homodyne detection scheme allows the simultaneous measurement of the absorption at multiple frequencies and is robust against dispersion across the absorption profile. We predict a significant enhancement of the signal-to-noise ratio that scales exponentially with the squeezing factor. An order of magnitude improvement beyond the standard quantum limit is possible with state-of-the-art squeezing levels facilitating high precision gas sensing.

  • Figure
  • Figure
  • Figure
  • Received 2 October 2022
  • Revised 10 February 2023
  • Accepted 14 March 2023

DOI:https://doi.org/10.1103/PhysRevLett.130.133602

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & TechnologyAtomic, Molecular & OpticalCondensed Matter, Materials & Applied Physics

Authors & Affiliations

Alexandre Belsley*

  • Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom and Quantum Engineering Centre for Doctoral Training, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom

  • *Corresponding author. alex.belsley@bristol.ac.uk

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 130, Iss. 13 — 31 March 2023

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×