Constraining the P30(p,γ)S31 Reaction Rate in ONe Novae via the Weak, Low-Energy, β-Delayed Proton Decay of Cl31

T. Budner, M. Friedman, C. Wrede, B. A. Brown, J. José, D. Pérez-Loureiro, L. J. Sun, J. Surbrook, Y. Ayyad, D. W. Bardayan, K. Chae, A. A. Chen, K. A. Chipps, M. Cortesi, B. Glassman, M. R. Hall, M. Janasik, J. Liang, P. O’Malley, E. Pollacco, A. Psaltis, J. Stomps, and T. Wheeler
Phys. Rev. Lett. 128, 182701 – Published 3 May 2022

Abstract

The P30(p,γ)S31 reaction plays an important role in understanding the nucleosynthesis of A30 nuclides in oxygen-neon novae. The Gaseous Detector with Germanium Tagging was used to measure Cl31 β-delayed proton decay through the key Jπ=3/2+, 260-keV resonance. The intensity Iβp260=8.30.9+1.2×106 represents the weakest β-delayed, charged-particle emission ever measured below 400 keV, resulting in a proton branching ratio of Γp/Γ=2.50.3+0.4×104. By combining this measurement with shell-model calculations for Γγ and past work on other resonances, the total P30(p,γ)S31 rate has been determined with reduced uncertainty. The new rate has been used in hydrodynamic simulations to model the composition of nova ejecta, leading to a concrete prediction of Si30:Si28 excesses in presolar nova grains and the calibration of nuclear thermometers.

  • Figure
  • Figure
  • Received 9 June 2021
  • Revised 14 January 2022
  • Accepted 4 April 2022

DOI:https://doi.org/10.1103/PhysRevLett.128.182701

© 2022 American Physical Society

Physics Subject Headings (PhySH)

Nuclear PhysicsInterdisciplinary PhysicsGravitation, Cosmology & Astrophysics

Authors & Affiliations

T. Budner1,2,*, M. Friedman1,3, C. Wrede1,2,†, B. A. Brown1,2, J. José4,5, D. Pérez-Loureiro1, L. J. Sun1,6, J. Surbrook1,2, Y. Ayyad1,7, D. W. Bardayan8, K. Chae9, A. A. Chen10, K. A. Chipps11,12, M. Cortesi1, B. Glassman1,2, M. R. Hall8, M. Janasik1,2, J. Liang10, P. O’Malley8, E. Pollacco13, A. Psaltis10, J. Stomps1,2, and T. Wheeler1,2

  • 1Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
  • 2National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
  • 3Racah Institute of Physics, Hebrew University, Jerusalem, Israel 91904
  • 4Departament de Física, Universitat Politècnica de Catalunya, E-08019 Barcelona, Spain
  • 5Institut d’Estudis Espacials de Catalunya, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain
  • 6School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 7IGFAE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
  • 8Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
  • 9Department of Physics, Sungkyunkwan University, Seoul 16419, South Korea
  • 10Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4L8, Canada
  • 11Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830-37831, USA
  • 12Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
  • 13Département de Physique Nucléaire, IRFU, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France

  • *budner@nscl.msu.edu
  • wrede@nscl.msu.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 128, Iss. 18 — 6 May 2022

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×