• Editors' Suggestion

Simulation of Quantum Circuits Using the Big-Batch Tensor Network Method

Feng Pan and Pan Zhang
Phys. Rev. Lett. 128, 030501 – Published 19 January 2022
PDFHTMLExport Citation

Abstract

We propose a tensor network approach to compute amplitudes and probabilities for a large number of correlated bitstrings in the final state of a quantum circuit. As an application, we study Google’s Sycamore circuits, which are believed to be beyond the reach of classical supercomputers and have been used to demonstrate quantum supremacy. By employing a small computational cluster containing 60 graphical processing units (GPUs), we compute exact amplitudes and probabilities of 2×106 correlated bitstrings with some entries fixed (which span a subspace of the output probability distribution) for the Sycamore circuit with 53 qubits and 20 cycles. The obtained results verify the Porter-Thomas distribution of the large and deep quantum circuits of Google, provide datasets and benchmarks for developing approximate simulation methods, and can be used for spoofing the linear cross entropy benchmark of quantum supremacy. Then we extend the proposed big-batch method to a full-amplitude simulation approach that is more efficient than the existing Schrödinger method on shallow circuits and the Schrödinger-Feynman method in general, enabling us to obtain the state vector of Google’s simplifiable circuit with n=43 qubits and m=14 cycles using only one GPU. We also manage to obtain the state vector for Google’s simplifiable circuits with n=50 qubits and m=14 cycles using a small GPU cluster, breaking the previous record on the number of qubits in full-amplitude simulations. Our method is general in computing bitstring probabilities for a broad class of quantum circuits and can find applications in the verification of quantum computers. We anticipate that our method will pave the way for combining tensor network–based classical computations and near-term quantum computations for solving challenging problems in the real world.

  • Figure
  • Figure
  • Received 7 May 2021
  • Revised 30 July 2021
  • Accepted 10 December 2021

DOI:https://doi.org/10.1103/PhysRevLett.128.030501

© 2022 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Feng Pan1,2 and Pan Zhang1,3,4,*

  • 1CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
  • 4International Centre for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China

  • *Corresponding author. panzhang@itp.ac.cn

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 128, Iss. 3 — 21 January 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×