• Editors' Suggestion

Time-Resolved XUV Opacity Measurements of Warm Dense Aluminum

S. M. Vinko, V. Vozda, J. Andreasson, S. Bajt, J. Bielecki, T. Burian, J. Chalupsky, O. Ciricosta, M. P. Desjarlais, H. Fleckenstein, J. Hajdu, V. Hajkova, P. Hollebon, L. Juha, M. F. Kasim, E. E. McBride, K. Muehlig, T. R. Preston, D. S. Rackstraw, S. Roling, S. Toleikis, J. S. Wark, and H. Zacharias
Phys. Rev. Lett. 124, 225002 – Published 4 June 2020
PDFHTMLExport Citation

Abstract

The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order of the Fermi energy. Plasma heating and opacity enhancement are observed on ultrafast timescales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm dense matter.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 September 2019
  • Revised 2 May 2020
  • Accepted 22 May 2020

DOI:https://doi.org/10.1103/PhysRevLett.124.225002

© 2020 American Physical Society

Physics Subject Headings (PhySH)

Plasma Physics

Authors & Affiliations

S. M. Vinko1,*, V. Vozda2,3, J. Andreasson4,5, S. Bajt6, J. Bielecki7, T. Burian3, J. Chalupsky3, O. Ciricosta1, M. P. Desjarlais8, H. Fleckenstein9, J. Hajdu10,4, V. Hajkova3, P. Hollebon1, L. Juha3, M. F. Kasim1, E. E. McBride11, K. Muehlig12, T. R. Preston7, D. S. Rackstraw1, S. Roling13, S. Toleikis6, J. S. Wark1, and H. Zacharias13

  • 1Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
  • 2Charles University, Faculty of Mathematics and Physics, Institute of Physics, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
  • 3Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
  • 4ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
  • 5Chalmers University of Technology, Department of Physics, 41296 Göteborg, Sweden
  • 6Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
  • 7European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
  • 8Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
  • 9Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
  • 10Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
  • 11SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • 12Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596SE-751 24 Uppsala, Sweden
  • 13Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany

  • *sam.vinko@physics.ox.ac.uk

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 124, Iss. 22 — 5 June 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×