Electric Rydberg-Atom Interferometry

J. E. Palmer and S. D. Hogan
Phys. Rev. Lett. 122, 250404 – Published 27 June 2019

Abstract

An electric analogue of the longitudinal Stern-Gerlach matter-wave interferometer has been realized for atoms in Rydberg states with high principal quantum number n. The experiments were performed with He atoms prepared in coherent superpositions of the n=55 and n=56 circular Rydberg states in a zero electric field by a π/2 pulse of resonant microwave radiation. These atoms were subjected to a pulsed inhomogeneous electric field to generate a superposition of momentum states before a π pulse was applied to invert the internal states. The same pulsed inhomogeneous electric field was then reapplied for a second time to transform the motional states to have equal momenta before a further π/2 pulse was employed to interrogate the final Rydberg state populations. This Hahn-echo microwave pulse sequence, interspersed with a pair of equivalent inhomogeneous electric field pulses, yielded two spatially separated matter waves. Interferences between these matter waves were observed as oscillations in the final Rydberg state populations as the amplitude of the pulsed electric field gradients was adjusted.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 27 January 2019

DOI:https://doi.org/10.1103/PhysRevLett.122.250404

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

J. E. Palmer and S. D. Hogan

  • Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 122, Iss. 25 — 28 June 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×