• Open Access

No-Boundary Proposal as a Path Integral with Robin Boundary Conditions

Alice Di Tucci and Jean-Luc Lehners
Phys. Rev. Lett. 122, 201302 – Published 23 May 2019

Abstract

Realizing the no-boundary proposal of Hartle and Hawking as a consistent gravitational path integral has been a long-standing puzzle. In particular, it was demonstrated by Feldbrugge, Lehners, and Turok that the sum over all universes starting from a zero size results in an unstable saddle point geometry. Here we show that, in the context of gravity with a positive cosmological constant, path integrals with a specific family of Robin boundary conditions overcome this problem. These path integrals are manifestly convergent and are approximated by stable Hartle-Hawking saddle point geometries. The price to pay is that the off-shell geometries do not start at a zero size. The Robin boundary conditions may be interpreted as an initial state with Euclidean momentum, with the quantum uncertainty shared between the initial size and momentum.

  • Figure
  • Figure
  • Figure
  • Received 18 March 2019

DOI:https://doi.org/10.1103/PhysRevLett.122.201302

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Alice Di Tucci and Jean-Luc Lehners

  • Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), 14476 Potsdam, Germany

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 122, Iss. 20 — 24 May 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×