Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths

G. Dieterle, J. Förster, H. Stoll, A. S. Semisalova, S. Finizio, A. Gangwar, M. Weigand, M. Noske, M. Fähnle, I. Bykova, J. Gräfe, D. A. Bozhko, H. Yu. Musiienko-Shmarova, V. Tiberkevich, A. N. Slavin, C. H. Back, J. Raabe, G. Schütz, and S. Wintz
Phys. Rev. Lett. 122, 117202 – Published 21 March 2019
PDFHTMLExport Citation

Abstract

In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagating spin waves and their excitation over a wide range of frequencies. By further analysis, we found that these waves exhibit a heterosymmetric mode profile, involving regions with anti-Larmor precession sense and purely linear magnetic oscillation. In particular, this mode profile consists of dynamic vortices with laterally alternating helicity, leading to a partial magnetic flux closure over the film thickness, which is explained by a strong and unexpected mode hybridization. This spin-wave phenomenon observed is a general effect inherent to the dynamics of sufficiently thick ferromagnetic single layer films, independent of the specific excitation method employed.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 28 November 2018

DOI:https://doi.org/10.1103/PhysRevLett.122.117202

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

G. Dieterle1,*, J. Förster1, H. Stoll1,2, A. S. Semisalova3,¶, S. Finizio4, A. Gangwar5, M. Weigand1,†, M. Noske1, M. Fähnle1, I. Bykova1, J. Gräfe1, D. A. Bozhko6,‡, H. Yu. Musiienko-Shmarova6, V. Tiberkevich7, A. N. Slavin7, C. H. Back5,§, J. Raabe4, G. Schütz1, and S. Wintz3,4,∥

  • 1Max-Planck-Institut für Intelligente Systeme, 70569 Stuttgart, Germany
  • 2Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
  • 3Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
  • 4Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
  • 5Universität Regensburg, 93053 Regensburg, Germany
  • 6Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
  • 7Oakland University, Rochester, Michigan 48309, USA

  • *dieterle@is.mpg.de
  • Present address: Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany.
  • Present address: Glasgow University, Glasgow G12 8LT, United Kingdom.
  • §Present address: Technische Universität München, 85748 München, Germany.
  • sebastian.wintz@psi.ch
  • Present address: Universität Duisburg-Essen, 47057 Duisburg, Germany.

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 122, Iss. 11 — 22 March 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×