• Open Access

Evidence of a Resonant Structure in the e+eπ+D0D* Cross Section between 4.05 and 4.60 GeV

M. Ablikim et al. (BESIII Collaboration)
Phys. Rev. Lett. 122, 102002 – Published 15 March 2019
PDFHTMLExport Citation

Abstract

The cross section of the process e+eπ+D0D* for center-of-mass energies from 4.05 to 4.60 GeV is measured precisely using data samples collected with the BESIII detector operating at the BEPCII storage ring. Two enhancements are clearly visible in the cross section around 4.23 and 4.40 GeV. Using several models to describe the dressed cross section yields stable parameters for the first enhancement, which has a mass of 4228.6±4.1±6.3MeV/c2 and a width of 77.0±6.8±6.3MeV, where the first uncertainties are statistical and the second ones are systematic. Our resonant mass is consistent with previous observations of the Y(4220) state and the theoretical prediction of a DD¯1(2420) molecule. This result is the first observation of Y(4220) associated with an open-charm final state. Fits with three resonance functions with additional Y(4260), Y(4320), Y(4360), ψ(4415), or a new resonance do not show significant contributions from either of these resonances. The second enhancement is not from a single known resonance. It could contain contributions from ψ(4415) and other resonances, and a detailed amplitude analysis is required to better understand this enhancement.

  • Figure
  • Figure
  • Received 9 August 2018
  • Revised 10 February 2019

DOI:https://doi.org/10.1103/PhysRevLett.122.102002

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

  1. Physical Systems
Particles & Fields

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 122, Iss. 10 — 15 March 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×