• Open Access

Spectrum of Majorana Quantum Mechanics with O(4)3 Symmetry

Kiryl Pakrouski, Igor R. Klebanov, Fedor Popov, and Grigory Tarnopolsky
Phys. Rev. Lett. 122, 011601 – Published 10 January 2019
PDFHTMLExport Citation

Abstract

We study the quantum mechanics of three-index Majorana fermions ψabc governed by a quartic Hamiltonian with O(N)3 symmetry. Similarly to the Sachdev-Ye-Kitaev model, this tensor model has a solvable large-N limit dominated by the melonic diagrams. For N=4 the total number of states is 232, but they naturally break up into distinct sectors according to the charges under the U(1)×U(1) Cartan subgroup of one of the O(4) groups. The biggest sector has vanishing charges and contains over 165 million states. Using a Lanczos algorithm, we determine the spectrum of the low-lying states in this and other sectors. We find that the absolute ground state is nondegenerate. If the SO(4)3 symmetry is gauged, it is known from earlier work that the model has 36 states and a residual discrete symmetry. We study the discrete symmetry group in detail; it gives rise to degeneracies of some of the gauge singlet energies. We find all the gauge singlet energies numerically and use the results to propose exact analytic expressions for them.

  • Figure
  • Received 13 September 2018

DOI:https://doi.org/10.1103/PhysRevLett.122.011601

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & FieldsCondensed Matter, Materials & Applied PhysicsInterdisciplinary PhysicsGeneral Physics

Authors & Affiliations

Kiryl Pakrouski1, Igor R. Klebanov1,2, Fedor Popov1, and Grigory Tarnopolsky3

  • 1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
  • 2Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
  • 3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 122, Iss. 1 — 11 January 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×