• Open Access

Transport Peak in the Thermal Spectral Function of N=4 Supersymmetric Yang-Mills Plasma at Intermediate Coupling

Jorge Casalderrey-Solana, Sašo Grozdanov, and Andrei O. Starinets
Phys. Rev. Lett. 121, 191603 – Published 9 November 2018

Abstract

We study the structure of thermal spectral function of the stress-energy tensor in N=4 supersymmetric Yang-Mills theory at intermediate ‘t Hooft coupling and infinite number of colors. In gauge-string duality, this analysis reduces to the study of classical bulk supergravity with higher-derivative corrections, which correspond to (inverse) coupling corrections on the gauge theory side. We extrapolate the analysis of perturbative leading-order corrections to intermediate coupling by nonperturbatively solving the equations of motion of metric fluctuations dual to the stress-energy tensor at zero spatial momentum. We observe the emergence of a separation of scales in the analytic structure of the thermal correlator associated with two types of characteristic relaxation modes. As a consequence of this separation, the associated spectral function exhibits a narrow structure in the small frequency region which controls the dynamics of transport in the theory and may be described as a transport peak typically found in perturbative, weakly interacting thermal field theories. We compare our results with generic expectations drawn from perturbation theory, where such a structure emerges as a consequence of the existence of quasiparticles.

  • Figure
  • Figure
  • Received 3 July 2018
  • Revised 14 August 2018

DOI:https://doi.org/10.1103/PhysRevLett.121.191603

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Jorge Casalderrey-Solana1,2, Sašo Grozdanov3, and Andrei O. Starinets1

  • 1Rudolf Peierls Centre for Theoretical Physics, Clarendon Lab, Oxford, OX1 3PU, United Kingdom
  • 2Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
  • 3Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 121, Iss. 19 — 9 November 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×