Distinctive Picosecond Spin Polarization Dynamics in Bulk Half Metals

M. Battiato, J. Minár, W. Wang, W. Ndiaye, M. C. Richter, O. Heckmann, J.-M. Mariot, F. Parmigiani, K. Hricovini, and C. Cacho
Phys. Rev. Lett. 121, 077205 – Published 17 August 2018

Abstract

Femtosecond laser excitations in half-metal (HM) compounds are theoretically predicted to induce an exotic picosecond spin dynamics. In particular, conversely to what is observed in conventional metals and semiconductors, the thermalization process in HMs leads to a long living partially thermalized configuration characterized by three Fermi-Dirac distributions for the minority, majority conduction, and majority valence electrons, respectively. Remarkably, these distributions have the same temperature but different chemical potentials. This unusual thermodynamic state is causing a persistent nonequilibrium spin polarization only well above the Fermi energy. Femtosecond spin dynamics experiments performed on Fe3O4 by time- and spin-resolved photoelectron spectroscopy support our model. Furthermore, the spin polarization response proves to be very robust and it can be adopted to selectively test the bulk HM character in a wide range of compounds.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 1 March 2018

DOI:https://doi.org/10.1103/PhysRevLett.121.077205

© 2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

M. Battiato1,2,*, J. Minár3, W. Wang4, W. Ndiaye5, M. C. Richter5,6, O. Heckmann5,6, J.-M. Mariot7,8, F. Parmigiani9,10,11, K. Hricovini5,6, and C. Cacho12,13,†

  • 1School of Physical and Mathematical Sciences, Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore, Singapore
  • 2Institute of Solid State Physics, Technische Universität Wien, Wiedner Hauptstraße 8, 1040 Vienna, Austria
  • 3New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
  • 4Department of Physics, Biology and Chemistry, Linköping University, 581 83 Linköping, Sweden
  • 5Laboratoire de Physique des Matériaux et des Surfaces, Université de Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise, France
  • 6DRF, IRAMIS, SPEC—CNRS/UMR 3680, Bâtiment 772, L’Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
  • 7Sorbonne Université, CNRS (UMR 7614), Laboratoire de Chimie Physique–Matière et Rayonnement, 4 place Jussieu, 75252 Paris Cedex 05, France
  • 8Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
  • 9Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, 34127 Trieste, Italy
  • 10Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza, Italy
  • 11International Faculty, Universität zu Köln, 50937 Köln, Germany
  • 12Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
  • 13Central Laser Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom

  • *Corresponding author. marco.battiato@ntu.edu.sg
  • Corresponding author. cephise.cacho@diamond.ac.uk

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 121, Iss. 7 — 17 August 2018

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×