Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

Tian Xie and Jeffrey C. Grossman
Phys. Rev. Lett. 120, 145301 – Published 6 April 2018
PDFHTMLExport Citation

Abstract

The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 104 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.

  • Figure
  • Figure
  • Figure
  • Received 18 October 2017
  • Revised 15 December 2017

DOI:https://doi.org/10.1103/PhysRevLett.120.145301

© 2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsInterdisciplinary PhysicsAtomic, Molecular & Optical

Authors & Affiliations

Tian Xie and Jeffrey C. Grossman

  • Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 120, Iss. 14 — 6 April 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×