Determination of Hydrogen Density by Swift Heavy Ions

Ge Xu, M. D. Barriga-Carrasco, A. Blazevic, B. Borovkov, D. Casas, K. Cistakov, R. Gavrilin, M. Iberler, J. Jacoby, G. Loisch, R. Morales, R. Mäder, S.-X. Qin, T. Rienecker, O. Rosmej, S. Savin, A. Schönlein, K. Weyrich, J. Wiechula, J. Wieser, G. Q. Xiao, and Y. T. Zhao
Phys. Rev. Lett. 119, 204801 – Published 15 November 2017

Abstract

A novel method to determine the total hydrogen density and, accordingly, a precise plasma temperature in a lowly ionized hydrogen plasma is described. The key to the method is to analyze the energy loss of swift heavy ions interacting with the respective bound and free electrons of the plasma. A slowly developing and lowly ionized hydrogen theta-pinch plasma is prepared. A Boltzmann plot of the hydrogen Balmer series and the Stark broadening of the Hβ line preliminarily defines the plasma with a free electron density of (1.9±0.1)×1016cm3 and a free electron temperature of 0.8–1.3 eV. The temperature uncertainty results in a wide hydrogen density, ranging from 2.3×1016 to 7.8×1018cm3. A 108 MHz pulsed beam of Ca4810+ with a velocity of 3.652  MeV/u is used as a probe to measure the total energy loss of the beam ions. Subtracting the calculated energy loss due to free electrons, the energy loss due to bound electrons is obtained, which linearly depends on the bound electron density. The total hydrogen density is thus determined as (1.9±0.7)×1017cm3, and the free electron temperature can be precisely derived as 1.01±0.04eV. This method should prove useful in many studies, e.g., inertial confinement fusion or warm dense matter.

  • Figure
  • Figure
  • Figure
  • Received 16 May 2017

DOI:https://doi.org/10.1103/PhysRevLett.119.204801

© 2017 American Physical Society

Physics Subject Headings (PhySH)

Accelerators & BeamsPlasma Physics

Authors & Affiliations

Ge Xu1,2,3,*, M. D. Barriga-Carrasco4, A. Blazevic5, B. Borovkov6, D. Casas4, K. Cistakov1, R. Gavrilin6, M. Iberler1, J. Jacoby1, G. Loisch7, R. Morales4, R. Mäder1, S.-X. Qin8, T. Rienecker1, O. Rosmej5, S. Savin6, A. Schönlein1, K. Weyrich5, J. Wiechula1, J. Wieser9, G. Q. Xiao2, and Y. T. Zhao10

  • 1Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main, Germany
  • 2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
  • 3University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
  • 4E.T.S.I. Industriales, Universidad de Castilla–La Mancha, E-13071 Ciudad Real, Spain
  • 5GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
  • 6Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia
  • 7Deutsches Elektronen Synchrotron DESY, 15738 Zeuthen, Germany
  • 8Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China
  • 9Excitech GmbH, 26419 Schortens, Germany
  • 10School of Science, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China

  • *g.xu@gsi.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 119, Iss. 20 — 17 November 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×