Correlation Decay in Fermionic Lattice Systems with Power-Law Interactions at Nonzero Temperature

Senaida Hernández-Santana, Christian Gogolin, J. Ignacio Cirac, and Antonio Acín
Phys. Rev. Lett. 119, 110601 – Published 13 September 2017
PDFHTMLExport Citation

Abstract

We study correlations in fermionic lattice systems with long-range interactions in thermal equilibrium. We prove a bound on the correlation decay between anticommuting operators and generalize a long-range Lieb-Robinson-type bound. Our results show that in these systems of spatial dimension D with, not necessarily translation invariant, two-site interactions decaying algebraically with the distance with an exponent α2D, correlations between such operators decay at least algebraically to 0 with an exponent arbitrarily close to α at any nonzero temperature. Our bound is asymptotically tight, which we demonstrate by a high temperature expansion and by numerically analyzing density-density correlations in the one-dimensional quadratic (free, exactly solvable) Kitaev chain with long-range pairing.

  • Figure
  • Received 22 March 2017

DOI:https://doi.org/10.1103/PhysRevLett.119.110601

© 2017 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & TechnologyStatistical Physics & ThermodynamicsCondensed Matter, Materials & Applied Physics

Authors & Affiliations

Senaida Hernández-Santana1, Christian Gogolin1,2, J. Ignacio Cirac2, and Antonio Acín1,3

  • 1ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
  • 2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
  • 3ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 119, Iss. 11 — 15 September 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×