Magnetic Domain Walls as Hosts of Spin Superfluids and Generators of Skyrmions

Se Kwon Kim and Yaroslav Tserkovnyak
Phys. Rev. Lett. 119, 047202 – Published 25 July 2017
PDFHTMLExport Citation

Abstract

A domain wall in a magnet with easy-axis anisotropy is shown to harbor spin superfluid associated with its spontaneous breaking of the U(1) spin-rotational symmetry. The spin superfluid is shown to have several topological properties, which are absent in conventional superfluids. First, the associated phase slips create and destroy Skyrmions to obey the conservation of the total Skyrmion charge, which allows us to use a domain wall as a generator and detector of Skyrmions. Second, the domain wall engenders the emergent magnetic flux for magnons along its length, which are proportional to the spin supercurrent flowing through it, and thereby provides a way to manipulate magnons. Third, the spin supercurrent can be driven by the magnon current traveling across it owing to the spin transfer between the domain wall and magnons, leading to the magnonic manipulation of the spin superfluid. The theory for superfluid spin transport within the domain wall is confirmed by numerical simulations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 14 February 2017

DOI:https://doi.org/10.1103/PhysRevLett.119.047202

© 2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Se Kwon Kim and Yaroslav Tserkovnyak

  • Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 119, Iss. 4 — 28 July 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×