Multiple Supersonic Phase Fronts Launched at a Complex-Oxide Heterointerface

M. Först, K. R. Beyerlein, R. Mankowsky, W. Hu, G. Mattoni, S. Catalano, M. Gibert, O. Yefanov, J. N. Clark, A. Frano, J. M. Glownia, M. Chollet, H. Lemke, B. Moser, S. P. Collins, S. S. Dhesi, A. D. Caviglia, J.-M. Triscone, and A. Cavalleri
Phys. Rev. Lett. 118, 027401 – Published 9 January 2017

Abstract

Selective optical excitation of a substrate lattice can drive phase changes across heterointerfaces. This phenomenon is a nonequilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved nonresonant and resonant x-ray diffraction to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time. We measure the dynamics of the lattice and that of the charge disproportionation in NdNiO3, when an insulator-metal transition is driven by coherent lattice distortions in the LaAlO3 substrate. We find that charge redistribution propagates at supersonic speeds from the interface into the NdNiO3 film, followed by a sonic lattice wave. When combined with measurements of magnetic disordering and of the metal-insulator transition, these results establish a hierarchy of events for ultrafast control at complex-oxide heterointerfaces.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 6 June 2016

DOI:https://doi.org/10.1103/PhysRevLett.118.027401

© 2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

M. Först1,2,*, K. R. Beyerlein2,3, R. Mankowsky1,2, W. Hu1,2, G. Mattoni4, S. Catalano5, M. Gibert5, O. Yefanov2,3, J. N. Clark2,6, A. Frano7,8, J. M. Glownia9, M. Chollet9, H. Lemke9,‡, B. Moser10, S. P. Collins10, S. S. Dhesi10, A. D. Caviglia4, J.-M. Triscone5, and A. Cavalleri1,2,11,†

  • 1Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
  • 2Center for Free Electron Laser Science, 22761 Hamburg, Germany
  • 3Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
  • 4Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
  • 5Department of Quantum Matter Physics, Université de Genève, 1211 Genève, Switzerland
  • 6Stanford Pulse Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • 7Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
  • 8Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
  • 9Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • 10Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
  • 11Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom

  • *michael.foerst@mpsd.mpg.de
  • andrea.cavalleri@mpsd.mpg.de
  • Present address: Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 118, Iss. 2 — 13 January 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×