• Open Access

Detecting Chirality in Molecules by Linearly Polarized Laser Fields

Andrey Yachmenev and Sergei N. Yurchenko
Phys. Rev. Lett. 117, 033001 – Published 11 July 2016

Abstract

A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a π phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic nonrigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 26 February 2016

DOI:https://doi.org/10.1103/PhysRevLett.117.033001

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

  1. Research Areas
  1. Physical Systems
Atomic, Molecular & Optical

Authors & Affiliations

Andrey Yachmenev and Sergei N. Yurchenko

  • Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 117, Iss. 3 — 15 July 2016

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×