Dynamic Nuclear Polarization and the Paradox of Quantum Thermalization

Andrea De Luca and Alberto Rosso
Phys. Rev. Lett. 115, 080401 – Published 20 August 2015
PDFHTMLExport Citation

Abstract

Dynamic nuclear polarization (DNP) is to date the most effective technique to increase the nuclear polarization opening disruptive perspectives for medical applications. In a DNP setting, the interacting spin system is quasi-isolated and brought out of equilibrium by microwave irradiation. Here we show that the resulting stationary state strongly depends on the ergodicity properties of the spin many-body eigenstates. In particular, the dipolar interactions compete with the disorder induced by local magnetic fields resulting in two distinct dynamical phases: while for weak interaction, only a small enhancement of polarization is observed, for strong interactions the spins collectively equilibrate to an extremely low effective temperature that boosts DNP efficiency. We argue that these two phases are intimately related to the problem of thermalization in closed quantum systems where a many-body localization transition can occur varying the strength of the interactions.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 May 2015

DOI:https://doi.org/10.1103/PhysRevLett.115.080401

© 2015 American Physical Society

Authors & Affiliations

Andrea De Luca and Alberto Rosso

  • Laboratoire de Physique Théorique et Modèles Statistiques (UMR CNRS 8626), Université Paris-Sud, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 115, Iss. 8 — 21 August 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×