Gaussian Process Model for Collision Dynamics of Complex Molecules

Jie Cui and Roman V. Krems
Phys. Rev. Lett. 115, 073202 – Published 13 August 2015

Abstract

We show that a Gaussian process model can be combined with a small number (of order 100) of scattering calculations to provide a multidimensional dependence of scattering observables on the experimentally controllable parameters (such as the collision energy or temperature) as well as the potential energy surface (PES) parameters. For the case of ArC6H6 collisions, we show that 200 classical trajectory calculations are sufficient to provide a ten-dimensional hypersurface, giving the dependence of the collision lifetimes on the collision energy, internal temperature, and eight PES parameters. This can be used for solving the inverse scattering problem, for the efficient calculation of thermally averaged observables, for reducing the error of the molecular dynamics calculations by averaging over the PES variations, and for the analysis of the sensitivity of the observables to individual parameters determining the PES. Trained by a combination of classical and quantum calculations, the model provides an accurate description of the quantum scattering cross sections, even near scattering resonances.

  • Figure
  • Figure
  • Figure
  • Received 2 March 2015

DOI:https://doi.org/10.1103/PhysRevLett.115.073202

© 2015 American Physical Society

Authors & Affiliations

Jie Cui and Roman V. Krems

  • Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 115, Iss. 7 — 14 August 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×