Polaronic Atom-Trimer Continuity in Three-Component Fermi Gases

Yusuke Nishida
Phys. Rev. Lett. 114, 115302 – Published 20 March 2015

Abstract

Recently it has been proposed that three-component Fermi gases may exhibit a new type of crossover physics in which an unpaired Fermi sea of atoms smoothly evolves into that of trimers in addition to the ordinary BCS-BEC crossover of condensed pairs. Here we study its corresponding polaron problem in which a single impurity atom of one component interacts with condensed pairs of the other two components with equal populations. By developing a variational approach in the vicinity of a narrow Feshbach resonance, we show that the impurity atom smoothly changes its character from atom to trimer with increasing the attraction and eventually there is a sharp transition to dimer. The emergent polaronic atom-trimer continuity can be probed in ultracold atoms experiments by measuring the impurity spectral function. Our novel crossover wave function properly incorporating the polaronic atom-trimer continuity will provide a useful basis to further investigate the phase diagram of three-component Fermi gases in more general situations.

  • Figure
  • Figure
  • Figure
  • Received 17 December 2014

DOI:https://doi.org/10.1103/PhysRevLett.114.115302

© 2015 American Physical Society

Authors & Affiliations

Yusuke Nishida

  • Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8551, Japan

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 114, Iss. 11 — 20 March 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×