Dynamics of Symmetry Breaking during Quantum Real-Time Evolution in a Minimal Model System

Markus Heyl and Matthias Vojta
Phys. Rev. Lett. 113, 180601 – Published 29 October 2014
PDFHTMLExport Citation

Abstract

One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is ergodicity. It is, however, not sufficient in cases where the asymptotic long-time state lies in a symmetry-broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this symmetry. In equilibrium, one particular symmetry-broken state is chosen as a result of an infinitesimal symmetry-breaking perturbation. From a dynamical point of view the question is: Can such an infinitesimal perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time evolution? We study this question analytically for a minimal model system that can be associated with symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a completely symmetric state the system is able to break its symmetry dynamically and discuss how these features can be observed experimentally.

  • Figure
  • Figure
  • Figure
  • Received 15 January 2014

DOI:https://doi.org/10.1103/PhysRevLett.113.180601

© 2014 American Physical Society

Authors & Affiliations

Markus Heyl1,2 and Matthias Vojta3

  • 1Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
  • 2Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
  • 3Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 113, Iss. 18 — 31 October 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×