Breakdown of the Isobaric Multiplet Mass Equation for the A=20 and 21 Multiplets

A. T. Gallant, M. Brodeur, C. Andreoiu, A. Bader, A. Chaudhuri, U. Chowdhury, A. Grossheim, R. Klawitter, A. A. Kwiatkowski, K. G. Leach, A. Lennarz, T. D. Macdonald, B. E. Schultz, J. Lassen, H. Heggen, S. Raeder, A. Teigelhöfer, B. A. Brown, A. Magilligan, J. D. Holt, J. Menéndez, J. Simonis, A. Schwenk, and J. Dilling
Phys. Rev. Lett. 113, 082501 – Published 19 August 2014

Abstract

Using the Penning trap mass spectrometer TITAN, we performed the first direct mass measurements of Mg20,21, isotopes that are the most proton-rich members of the A=20 and A=21 isospin multiplets. These measurements were possible through the use of a unique ion-guide laser ion source, a development that suppressed isobaric contamination by 6 orders of magnitude. Compared to the latest atomic mass evaluation, we find that the mass of Mg21 is in good agreement but that the mass of Mg20 deviates by 3σ. These measurements reduce the uncertainties in the masses of Mg20,21 by 15 and 22 times, respectively, resulting in a significant departure from the expected behavior of the isobaric multiplet mass equation in both the A=20 and A=21 multiplets. This presents a challenge to shell model calculations using either the isospin nonconserving universal sd USDA and USDB Hamiltonians or isospin nonconserving interactions based on chiral two- and three-nucleon forces.

  • Figure
  • Figure
  • Received 27 November 2013

DOI:https://doi.org/10.1103/PhysRevLett.113.082501

© 2014 American Physical Society

Authors & Affiliations

A. T. Gallant1,2,*, M. Brodeur3, C. Andreoiu4, A. Bader1,5, A. Chaudhuri1,‡, U. Chowdhury1,6, A. Grossheim1, R. Klawitter1,7, A. A. Kwiatkowski1, K. G. Leach1,4, A. Lennarz1,8, T. D. Macdonald1,2, B. E. Schultz1, J. Lassen1,6, H. Heggen1, S. Raeder1, A. Teigelhöfer1,6, B. A. Brown9, A. Magilligan10, J. D. Holt11,12,9,†, J. Menéndez11,12, J. Simonis11,12, A. Schwenk12,11, and J. Dilling1,2

  • 1TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 Canada
  • 2Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 Canada
  • 3Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
  • 4Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
  • 5École des Mines de Nantes, La Chantrerie, 4, rue Alfred Kastler, B.P. 20722, F-44307 Nantes Cedex 3, France
  • 6Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
  • 7Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
  • 8Institut für Kernphysik, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
  • 9Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA
  • 10Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
  • 11Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
  • 12ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

  • *agallant@triumf.ca
  • Present address: TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 Canada.
  • Present address: Rare Isotope Science Project (RISP), Institute for Basic Science, Daejeon 305-811, Republic of Korea.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 113, Iss. 8 — 22 August 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×