Translationally Invariant Slip-Spring Model for Entangled Polymer Dynamics

Veronica C. Chappa, David C. Morse, Annette Zippelius, and Marcus Müller
Phys. Rev. Lett. 109, 148302 – Published 4 October 2012
PDFHTMLExport Citation

Abstract

The topological effect of noncrossability of long flexible macromolecules is effectively described by a slip-spring model, which represents entanglements by local, pairwise, translationally invariant interactions that do not alter any equilibrium properties. We demonstrate that the model correctly describes many aspects of the dynamical and rheological behavior of entangled polymer liquids, such as segmental mean-square displacements and shear thinning, in a computationally efficient manner. Furthermore, the model can account for the reduction of entanglements under shear.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 31 May 2012

DOI:https://doi.org/10.1103/PhysRevLett.109.148302

© 2012 American Physical Society

Authors & Affiliations

Veronica C. Chappa1,2,3, David C. Morse4, Annette Zippelius1, and Marcus Müller1

  • 1Institut für Theoretische Physik, Georg-August-Universität, 37077 Göttingen, Germany
  • 2Departamento de Física, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 Pcia. de Buenos Aires, Argentina
  • 3Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, 1033 Buenos Aires, Argentina
  • 4Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., Minneapolis, Minnesota 55455, USA

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 109, Iss. 14 — 5 October 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×