Entanglement of a Quantum Field with a Dispersive Medium

Israel Klich
Phys. Rev. Lett. 109, 061601 – Published 7 August 2012
PDFHTMLExport Citation

Abstract

In this Letter we study the entanglement of a quantum radiation field interacting with a dielectric medium. In particular, we describe the quantum mixed state of a field interacting with a dielectric through plasma and Drude models and show that these generate very different entanglement behavior, as manifested in the entanglement entropy of the field. We also present a formula for a “Casimir” entanglement entropy, i.e., the distance dependence of the field entropy. Finally, we study a toy model of the interaction between two plates. In this model, the field entanglement entropy is divergent; however, as in the Casimir effect, its distance-dependent part is finite, and the field matter entanglement is reduced when the objects are far.

  • Figure
  • Received 21 October 2011

DOI:https://doi.org/10.1103/PhysRevLett.109.061601

© 2012 American Physical Society

Authors & Affiliations

Israel Klich

  • Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 109, Iss. 6 — 10 August 2012

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×